ANALYSIS OF OVO APPLICATION SENTIMENT USING LEXICON BASED METHOD AND K-NEAREST NEIGHBOR

Sandra Dwi Widiyaningsih
Faculty of Computer Science and Information Technology Gunadarma University
Indonesia
Atit Pertiwi
Faculty of Computer Science and Information Technology Gunadarma University
Indonesia

Abstract

Money that has a function as a measuring tool, medium of exchange, and payment tools is transformed according to the development of the digital era with the issuance of electronic money. Ovo is an electronic money application in Indonesia. The public can provide a review of the service ovo application on the google play store. Further, the company can see how the responses from the user regarding the product as an evaluation of application performance so that improvements can be made. This requires a system for analyzing reviews by applying sentiment analysis use the R language. The initial stage of sentiment analysis is pre-processing which consists of case folding, cleansing, stopword, slang-word, and stemming. The data classification process is divided into two classes, namely positive and negative classes using the lexicon-based method, the data that has been carried out is then divided into training data and test data that will be used in the training and testing process using the Confusion Matrix. The results of the accuracy of the system using the k-nearest neighbor algorithm of 93.84%. with a positive preposition of 96,29%, negative preposition of 68,75%, positive recall of 96,18%, negative recall of 73,33% and error system of 6,16%.

Keywords
Sentiment Analysis, Lexicon Based, K-Nearest Neighbor, Confusion Matrix
References

Dey, L., Chakraborty, S., Biswas, A., Bose, B., & Tiwari, S. (2016). Sentimen analysis of review datasets using Naive Bayes’ and K-NN Classifier. International Journal of Information Engineering and Electronic Business, 8(4), 54-62.

Ding, X., Liu, B., & Yu, P.S. (2008). A holistic lexicon-based approach to opinion mining. Proceedings of the Internasional Conference on Web Search and Web Data Mining, WSDM, California, USA.

Ernawati, S., & Wati., R. (2018). Penerapan algoritma k-nearest neighbors pada Analisis Sentimen Review Agen Travel. Jurnal Ilmu Komputer. 6(1). 82-86. doi : 10.31294/jki.v6i1.3802.g2626.

Gunawan F., Fauzi M.A., & Adikara, P. P. (2017). Analisis sentimen pada ulasan aplikasi mobile menggunakan Naïve Bayes dan normalisasi kata berbasis Levensthein Distance (Studi kasus aplikasi BCA Mobile). Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer, 1(10), 1082-1088.

Haryanto, D.J, Muflikhah L., & Fauzi, M.A. (2018). Analisis sentimen review barang berbahasa Indonesia dengan metode support vector machine dan query expansion. Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer, 2(9). 2909–2916.

Kusumawati, I., Pamungkas E.W. (2017). Analisa sentimen menggunakan lexicon based untuk melihat persepsi masyarakat terhadap kenaikan harga rokok pada media sosial twitter (Bachelor’s Tesis). Universitas Muhammadiah Surakarta, Solo, retrieved from http://eprints.ums.ac.id/49476/3/NASKAH%20PUBLIKASI.pdf

Nurfalah A., Adiwijaya, & Suryani A. A. (2017). Analisis sentimen berbahasa Indonesia dengan pendekatan lexicon-based pada media sosial. Jurnal Masyarakat Informatika Indonesia. 2(1). 1-8.

Nurjanah, W.E., Perdana, R.S., & Fauzi, M.A. (2017). Analisis sentimen terhadap tayangan televisi berdasarkan opini masyarakat pada media sosial twitter menggunakan metode k-nearest neighbor dan pembobotan jumlah retweet. Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer, 1(12). 1750-1757.

Primartha, R. (2018). Belajar machine learning teori dan praktik. Informatika: Bandung

Rozi, I.F., Pramono, S. H., & Dahlan, E.A., (2013). Implementasi Opinion Mining (Analisis Sentimen) untuk Ekstraksi Data Opini Publik pada Perguruan Tinggi. Jurnal EECCIS. 6(1), 37–43.

Samuel, Y., Delima, R., & Rachmat, A. (2014). Implementasi metode k-nearest neighbor dengan decision rule untuk klasifikasi subtopik berita. Jurnal Informatika, 10(1),1- 15.

Sani, R. R., Zeniarja, J., & Lutfhiarta A. (2016). Penerapan algoritma k-nearest neighbor pada information retrieval dalam penentuan topik referensi tugas akhir. Journal of Applied Intelligent System. 1(2). 123-133. doi: 10.33633/jais.v1i2.1189

Information
PDF
1013 times PDF : 755 times