Evaluating Logistic Regression and SVM for Image Analysis Using VGG-16, VGG-19, and Inception V3 Features
Airlangga University
Indonesia
Airlangga University
Indonesia
Abstract
Keywords
References
Simonyan, K., & Zisserman, A. (2014), “Very Deep Convolutional Networks For Large-Scale Image Recognition,” Arxiv Preprint Arxiv:1409.1556, https://arxiv.org/abs/1409.1556.
Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., & Wojna, Z. (2016). Rethinking The Inception Architecture For Computer Vision. Proceedings Of The Ieee Conference On Computer Vision And Pattern Recognition (Cvpr), 2818–2826, https://arxiv.org/abs/1512.00567.
He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep Residual Learning For Image Recognition. Proceedings Of The Ieee Conference On Computer Vision And Pattern Recognition (Cvpr), 770–778, https://arxiv.org/abs/1512.03385.
Rawat, W., & Wang, Z. (2017). Deep Convolutional Neural Networks For Image Classification: A Comprehensive Review. Neural Computation, 29(9), 2352–2449, https://direct.mit.edu/neco/article/29/9/2352/8292/Deep-Convolutional-Neural-Networks-for-Image.
Yosinski, J., Clune, J., Bengio, Y., & Lipson, H. (2014). How Transferable Are Features In Deep Neural Networks? Advances In Neural Information Processing Systems (Nips), 27, 3320–3328, https://arxiv.org/abs/1411.1792.
Ciresan, D., Meier, U., Masci, J., Gambardella, L. M., & Schmidhuber, J. (2012). High-Performance Neural Networks For Visual Object Classification. Proceedings Of The Ieee Conference On Computer Vision And Pattern Recognition (Cvpr), 1–8, https://arxiv.org/abs/1102.0183.
Alisawi, M., & Yalçın, N. (2022). Real-Time Emotion Recognition Using Deep Learning Methods: Systematic Review. International Journal of Emerging Networked Systems, 1(1), 11-21, https://imiens.org/index.php/imiens/article/view/11.
Oliveira, L. E., Santos, T., & Silva, L. (2019). Emotion Recognition From Faces In The Wild Using Deep Learning And Attention Mechanisms. Neurocomputing, 363, 82–92.
Donahue, J., Jia, Y., Vinyals, O., Hoffman, J., Zhang, N., Tzeng, E., & Darrell, T. (2014). Decaf: A Deep Convolutional Activation Feature For Generic Visual Recognition. Proceedings Of The International Conference On Machine Learning (Icml), 647–655, https://arxiv.org/abs/1310.1531.
Lecun, Y., Bengio, Y., & Hinton, G. (2015). Deep Learning. Nature, 521(7553), 436–444, https://www.nature.com/articles/nature14539.
Kim, J.-C., Kim, M.-H., Suh, H.-E., Naseem, M. T., & Lee, C.-S. (2019). A Hybrid Facial Expression Recognition System Based on Recurrent Neural Network. Proceedings of the 16th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS), 1-6, https://ieeexplore.ieee.org/abstract/document/8909888.
Agarap, A. F. (2017). An Architecture Combining Convolutional Neural Network (CNN) and Support Vector Machine (SVM) for Image Classification. arXiv preprint arXiv:1712.03541, https://arxiv.org/abs/1712.03541.
Mollahosseini, A., Hasani, B., & Mahoor, M. H. (2016). Affectnet: A Database For Facial Expression, Valence, And Arousal Computing In The Wild. Ieee Transactions On Affective Computing, 10(1), 18–31, https://ieeexplore.ieee.org/document/7933966.
Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep Learning. Mit Press, https://www.deeplearningbook.org/.
Vapnik, V. (1995). The Nature Of Statistical Learning Theory. Springer-Verlag New York, https://link.springer.com/book/10.1007/978-1-4757-3264-1.
Cortes, C., & Vapnik, V. (1995). Support-Vector Networks. Machine Learning, 20(3), 273–297, https://link.springer.com/article/10.1007/BF00994018.
Department of Information and Library Science, Faculty of Social and Political Sciences, Airlangga University