POLA KERONTOKAN DAN KANDUNGAN HORMON ENDOGEN PADA BUAH JERUK PAMELO BERBIJI DAN TIDAK BERBIJI

Ummu Kalsum
orcid
https://www.scopus.com/authid/detail.uri?authorId=57221178476
Universitas Gunadarma
Indonesia
Slamet Susanto
Institut Pertanian Bogor
Indonesia
Ahmad Junaedi
Institut Pertanian Bogor
Indonesia
Nurul Khumaida
Institut Pertanian Bogor
Indonesia
Heni Purnamawati
Institut Pertanian Bogor
Indonesia

Abstract

Kerontokan buah tergantung pada kultivar, kandungan hormon, hara dan lingkungan. Tujuan dari penelitian ini adalah mengkaji pola kerontokan dan perubahan konsentrasi hormon yang terjadi dari beberapa kultivar pamelo berbiji dan tidak berbiji. Desain percobaan yang digunakan adalah rancangan acak lengkap dengan empat perlakuan, yaitu Adas Duku dan Bali Merah 1 (pamelo berbiji) serta Bali Merah 2 dan Jawa 1 (pamelo tidak berbiji). Variabel pengamatan terdiri atas jumlah buah rontok, initial dan final set, kandungan gula total, konsentrasi GA3, IAA dan asam absisat (ABA) buah. Hasil menunjukkan bahwa kedua kelompok (pamelo berbiji dan tidak berbiji) mengalami kerontokan buah pada awal perkembangan buah, namun kerontokan buah saat fase pematangan buah hanya pada kedua kultivar pamelo tidak berbiji. Initial set pamelo berbiji (28.76%) lebih tinggi dibandingkan pamelo tidak berbiji (21.75%). Final set pada pamelo tidak berbiji menunjukkan bahwa Bali Merah 2 (12.95%) lebih tinggi dibandingkan Jawa 1 (9.20%). Buah yang akan rontok dari pamelo berbiji dan tidak berbiji memiliki kandungan gula total <0.30%, sedangkan pada buah yang tidak rontok >0.30%. Konsentrasi GA3 dan IAA buah pamelo berbiji dan tidak berbiji mengalami peningkatan selama awal perkembangan buah (1 sampai 4 minggu setelah antesis = MSA), sedangkan konsentrasi ABA mengalami penurunan pada 3 MSA.

Keywords
ABA; GA3; Gula total; IAA; Initial set
References

Adjei PY, Boakye DA, Kwoseh C, Maalekuu BK. Ogyiri EA. 2017. Comparison of citrus pre-harvest fruit drop in three major citrus growing areas in Ashanti Region, Ghana. Agric. Biol. J. N. Am. 8(3):72-77. doi:10.5251/abjna.2017.8.3.72.77.

AOAC. 1990. Official Methods of Analysis of the Association of Official Analytical Chemist. AOAC int. Washington D.C

Ascough GD, Nogemane N, Mtshali NP, Staden JV. 2005. Flower abscission: environmental control, internal regulation and physiological responses of plants. South African J. Botany 71(3&4):287-301.

Bihst TS, Rawat L, Chakraborty B, Yadav V. 2018. A recent advance in use of plant growth regulators (PGRs) in fruit crops - A review. Int. J. Curr. Microbiol. App. Sci 7(5):1307-1336. doi: 10.20546/ijcmas.2018.705.159.

Cayabyab AM. 2004. Pummelo production. Davao City: A Publication of Department of Agriculture RFU XI Southern Mindanao Integrated Agricultural Research Center (SMIARC).

Chauhan N, Sharma JB, Rana K, Mir W, Bakshi M. 2020. Effects of gibberellins and promalin on the growth and development of fruit crops: A review. J Pharmacog. Phytochem. 9(6):1284-1289.

Chen P, Pei YL, Liang B, Zhang YS, Zhai XW, He SH, Kai WB, Sun YF, Leng P. 2016. Role of abscisic acid in regulating fruit set and ripening in squash (Cucurbita pepo L.). New Zealand J. Crop and Hort. Sci. 44(4):274-290. doi: 10.1080/01140671.2016.1212907.

Đorđević M, Radičević S, Cerović R, Milošević N, Mitrović M. 2012. Initial and final fruit set in plum cultivar ‘Pozna Plava’ as affected by different types of pollination. Acta Hort. 968: 121-124. doi: 10.17660/ActaHortic.2012. 968.16.

Eccher G, Botton A, Dimauro M, Boschetti A, Ruperti B. 2013. Early induction of apple fruitlet abscission is characterized by an increase of both isoprene emission and abscisic acid content. Plant Physiol. 161: 1952-1969. doi: 10.1104/pp.112.208470.

Farro S, Pinedo M. 2010. Possible factors which produce fruit drop of Myrciaria dubia (HBK) Mc Vaugh, "camu camu" during the reproductive phenology in the collection “cinco cuencas” from the San Miguel experimental center-IIAP, Loreto, Peru. Scientia Agropecuaria 1(2010): 117-123.

Fenn MA, Giovannoni JJ. 2021. Phytohormones in fruit development and maturation. The Plant Journal (2021) 105:446-458. doi: 10.1111/tpj.15112.

Garmendia A, Beltran R, Zornova C, Garcı´a-Breijo FJ, Reig J, Merle H. 2019. Gibberellic acid in Citrus spp. flowering and fruiting: A systematic review. PLOS ONE September 26:1-24. doi: 10.1371/journal.pone. 0223147.

He J, Yu S, Ma C. 2009. Effects of plant growth regulator on endogenous hormone levels during the period of the Red Globe growth. J. Agric. Sci. 1(1):92-100.

Iglesias DJ, Cercós M, Colmenero-Flores JM, Naranjo MA, Ríos G, Carrera E, Ruiz-Rivero O, Lliso I, Morillon R, Tadeo FR, Talon M. 2007. Physiology of citrus fruiting. Braz. J. Plant Physiol. 19 (4):333-362.

Iqbal N, Nazar R, Khan MIR, Masood A, Khan NA. 2011. Role of gibberellins in regulation of source–sink relations under optimal and limiting environmental conditions. Current Science 100(7):998-1007.

Kelen M, Demiralay EC, Sen S, Ozkan G. 2004. Separation of abscisic acid, Indole-3-acetic acid, Gibberellic acid in 99 R (Vitis berlandieri x Vitis rupestris) and Rose Oil (Rosa damascene Mill) by reversed phase liquid chromatography. Turkey J. Chem. 28:603-610.

Khandaker MM, Idris NS, Ismail SZ, Majrashi A, Alebedi A, Mat N. 2016. Causes and prevention of fruit drop of Syzygium samarangense (wax apple): A Review. Adv. Env. Biol. 10(11):112-123.

Khefifi H, Selmane R, Mimoun MB, Tadeo F, Morillon R, Luro F. 2020. Abscission of orange fruit (Citrus sinensis (L.) Osb.) in the Mediterranean Basin depends more on environmental conditions than on fruit ripeness. Agronomy 591(10):1-15. doi:10.3390/agronomy10040591.

Kumar R, Khurana A, Sharma AK. 2014. Role of plant hormones and their interplay in development and ripening of fleshy fruits. J.Exp. Botany 65(16):4561-4575. doi:10.1093/jxb/eru277.

Li LJ, Tan WS, Li WJ, Zhu YB, Cheng YS, Ni H. 2019. Citrus taste modification potentials by genetic engineering. Int J. Mol. Sci. 2019(20):1-16. doi:10.3390/ijms20246194.

Linskens HF, Jackson JF. 1987. High Performance Liquid Chromatography in Plant Sciences. Springer-Verlag. London. 241 pp.

Maulana YE, Agustini DM, Abdullah DKR, Alkandahri MY. 2018. Pengembangan metode analisis hormon tanaman kelompok auksin menggunakan kromatografi cair kinerja tinggi. Chimica et Natura Acta 6(1):1-7. doi: 10.24198/cna.v6.n1.14791.

Nartvaranant P. 2012. Physiological changes in pre-harvest dropped fruits in the pummelo cultivars ‘Thong Dee’ and ‘Khao Nam Phueng’. Songklanakarin J. Sci. Technol. 34(4):367-374.

Nartvaranant P. 2015. Endogenous hormonal status in Pummelo fruitlets cultivar Thong Dee: relationship with pre-harvest fruit drop. Songklanakarin J. Sci. Technol 37(5):539-544.

Pandolfini T. 2009. Seedless fruit production by hormonal regulation of fruit set. Nutrients 2009(1):168-177. doi:10.3390/nu1020168.

Pattison R, Csukasi F, Catala´ C. 2014. Mechanisms regulating auxin action during fruit development. Physiologia Plantarum 151:62-72. doi:10.1111/ppl. 12142.

Pozo LV. 2011. Endogenous hormonal status in citrus flowers and fruitlets: relationship with postbloom fruit drop. Scientia Horticulturae. 91:251-260.

Racskó J, Leite GB, Petri JL, Zhongfu S, Wang Y, Szabó Z, Soltész M, Nyéki J. 2007. Fruit drop: The role of inner agents and environmental factors in the drop of flowers and fruits. Intl. J. Hort. Sci. 13(3):13–23.

Ruiz R, Garcia-Luis A, Monerri C, Guardiola L. 2001. Carbohydrate availability in relation to fruitlet abscission in citrus. Annals of Botany 87:805-812. doi:10.1006/anbo.2001.1415.

Suman M, Sangma PD, Meghawal DR, Sahu OP. 2017. Effect of plant regulators on fruit crops. J. Pharmacognosy and Phytochemistry 692):331-337.

Thapliyal VS, Rai PN, Bora L. 2016. Influence of pre-harvest application of gibberellin and brassinosteroid on fruit growth and quality characteristics of pear (Pyrus pyrifolia (Burm.) Nakai) cv. Gola. J. Appl. Natural Sci. 8(4): 2305-2310.

Information
PDF
435 times PDF : 709 times