PREDIKSI KEPUASAN PELANGGAN HOTEL: STUDI PERBANDINGAN ALGORITMA DECISION TREE DAN KNEAREST NEIGHBOR

Dwi Ramti Asih
Universitas Siliwangi
Indonesia
Rianto Rianto
Universitas Siliwangi
Indonesia

Abstract

Customer satisfaction has become an important aspect for every business in today's competitive market. Understanding customer needs, wants, and expectations is critical for a business to provide outstanding customer service and retain customers. Therefore, this research represents a comparative study between two machine learning algorithms, Decision Tree and K-Nearest Neighbor, to predict hotel customer satisfaction. This study aims to identify which algorithm is more effective in predicting customer satisfaction by evaluating their performance using various metrics. The methodology used includes data preprocessing, feature selection, and machine learning model creation. The results show that the Decision Tree algorithm is superior to the K-Nearest Neighbor in terms of accuracy and precision. The findings from this study provide insights for businesses in the hospitality industry on how to predict customer satisfaction and improve their services.

Keywords
Customer Satisfaction; Decision Tree; K-Nearest Neighbor; Hotel Reviews
References

S. Rizal, A. R. Rahim, and E. Wardiana, “PENGARUH KUALITAS PELAYANAN TERHADAP KEPUASAN NASABAH PADA PT. BANK RAKYAT INDONESIA (PERSERO) Tbk.UNIT BENGO CABANG WATAMPONE,” J. Ilmu Manaj. Profitab., vol. 4, no. 1, pp. 98–113, 2020, doi: 10.26618/profitability.v4i1.3051.

W. B. Yang and M. R. A. Campos, “Factors Affecting Customer Satisfaction in International Hotels in Chenzhou City, China,” PEOPLE Int. J. Soc. Sci., vol. 5, no. 3, pp. 925–939, 2020, doi: 10.20319/pijss.2020.53.925939.

S. F. Sutan Faisal and N. Sutan Faisal, “Implementation of K-Nearest Neighbor Algorithm for Customer Satisfaction,” Buana Inf. Technol. Comput. Sci. (BIT CS), vol. 1, no. 2, pp. 27–32, 2020, doi: 10.36805/bit-cs.v1i2.886.

Fadhli Almu’iini Ahda and Mohammad Zainuddin, “Prediksi Kepuasan Pelayanan Perpustakaan Menggunakan Algoritma Decision Tree (C4.5),” J. Teknol. Inf., vol. 10, no. 2, pp. 143–150, 2019.

S. Amalia, I. Deborah, and I. N. Yulita, “Comparative analysis of classification algorithm: Random Forest, SPAARC, and MLP for airlines customer satisfaction,” Sinergi, vol. 26, no. 2, p. 213, 2022, doi: 10.22441/sinergi.2022.2.010.

B. Noori, “Classification of Customer Reviews Using Machine Learning Algorithms,” Appl. Artif. Intell., vol. 35, no. 8, pp. 567–588, 2021, doi: 10.1080/08839514.2021.1922843.

A. K. Febrian, Y. H. Chrisnanto, D. Pupita, N. Sabrina, and J. Achmad Yani, “SNESTIK Seminar Nasional Teknik Elektro, Sistem Informasi, dan Teknik Informatika Studi Komparasi Metode Klasifikasi K-Nearest Neghbor dan Naïve Bayes dalam Mengidentifikasi Kepuasan Pelanggan Terhadap Produk,” Semin. Nas. Tek. Elektro, Sist. Informasi, dan Tek. Inform., p. 333, 2022, [Online]. Available: https://ejurnal.itats.ac.id/snestikdanhttps://snestik.itats.ac.id

B. A. C. P, “DOI : 10.29408/jit.v1i1. 892,” Baiq Andriska Candra, vol. 1, no. 1, pp. 32–39, 2018.

P. Pangestu and R. Setyadi, “Penerapan Metode K-Nearest Neighbor Untuk Pemilihan Rekomendasi Game FPS Pada Aplikasi Google Play Store,” vol. 4, no. 2, pp. 742–747, 2023, doi: 10.47065/josh.v4i2.3006.

A. Suwarno et al., “Jurnal Teknologi Pelita Bangsa,” J. Teknol. Pelita Bangsa, vol. 12, no. 4, pp. 33–40, 2021.

C. L. Lin, T. P. Chen, K. C. Fan, H. Y. Cheng, and C. H. Chuang, “Radar high-resolution range profile ship recognition using two-channel convolutional neural networks concatenated with bidirectional long short-term memory,” Remote Sens., vol. 13, no. 7, 2021, doi: 10.3390/rs13071259.

A. N. Yuliarina and H. Hendry, “Comparison of Prediction Analysis of Gofood Service Users Using the Knn & Naive Bayes Algorithm With Rapidminer Software,” J. Tek. Inform., vol. 3, no. 4, pp. 847–856, 2022, doi: 10.20884/1.jutif.2022.3.4.294.

D. McCashin and C. M. Murphy, “Using TikTok for public and youth mental health – A systematic review and content analysis,” Clin. Child Psychol. Psychiatry, vol. 28, no. 1, pp. 279–306, 2023, doi: 10.1177/13591045221106608.

Y. Hartiwi, E. Rasywir, Y. Pratama, and P. A. Jusia, “Eksperimen Pengenalan Wajah dengan fitur Indoor Positioning System menggunakan Algoritma CNN,” Paradig. - J. Komput. dan Inform., vol. 22, no. 2, pp. 109–116, 2020, doi: 10.31294/p.v22i2.8906.

M. R. Raharjo and A. P. Windarto, “Penerapan Machine Learning dengan Konsep Data Mining Rough Set (Prediksi Tingkat Pemahaman Mahasiswa terhadap Matakuliah),” J. Media Inform. Budidarma, vol. 5, no. 1, p. 317, 2021, doi: 10.30865/mib.v5i1.2745.

A. Sanjaya, E. Setyati, and H. Budianto, “Modeling of Convolutional Neural Network Architecture for Recognizing The Pandava Mask,” Inf. J. Ilm. Bid. Teknol. Inf. dan Komun., vol. 5, no. 2, pp. 99–103, 2020, [Online]. Available: https://doaj.org/article/1078dd6621ea4b7c9e06bb47b0455d11

Information
PDF
323 times PDF : 163 times