PREDIKSI HARGA SAHAM INDEKS IDX30 DI INDONESIA SAAT PANDEMI COVID-19 DENGAN AUTOREGRESSIVE INTEGRATED MOVING AVERAGE (ARIMA)

Bayu Diharjo
Universitas Gunadarma
Indonesia
Rifiana Arief
Universitas Gunadarma
Indonesia

Abstract

Covid-19 (Corona Virus Disease 2019) adalah penyakit akibat serangan virus SARS-Cov-2 (Severe Acute Respiratory Syndrome Coronavirus2) atau lebih dikenal dengan istilah Virus Corona. Adanya pandemi corona ini berpengaruh terhadap berbagai sektor di Indonesia, salah satunya adalah sektor ekonomi dan kegiatan investasi. Hal ini ditandai dengan pelemahan nilai indeks saham dan pertumbuhan jumlah investor yang cukup tinggi. Salah satu Indeks saham adalah Indeks IDX30. Data Indeks IDX30 dapat membantu investor dalam prediksi harga beberapa periode kedepan dalam mengambil keputusan untuk buy atau hold saham untuk mengurangi kerugian dan memperoleh keuntungan. Tujuan penelitian melakukan analisis prediksi harga saham indeks IDX30 di Indonesia saat pandemi Covid-19 menggunakan Autoregressive Integrated Moving Average (ARIMA). Data yang digunakan sebanyak 369 data harian harga penutupan (closing price) Indeks IDX30 tanggal 04 Mei 2020 hingga 08 Mei 2021. Dari hasil pengujian diperoleh model terbaik yaitu ARIMA (0,1,1) dengan nilai error RMSE sebesar 46.11725 (46.11%), MAE sebesar 38.25260 (38.25%), dan MAPE sebesar 7.966014 (7.96%).

Keywords
ARIMA; Indeks IDX30; Covid-19; RMSE; MAE; MAPE
References

N. Mona, "Konsep isolasi dalam jaringan sosial untuk meminimalisasi efek contagious (kasus penyebaran virus corona di Indonesia)", Jurnal Sosial Humaniora Terapan, vol.2, no.2, pp 117-125, 2020.

I. Wahidah, M.A. Septiadi, M. C. A. Rafqie, N.F.S Hartono, R. Athallah, "Pandemik COVID-19: Analisis perencanaan pemerintah dan masyarakat dalam berbagai upaya pencegahan”, Jurnal Manajemen Dan Organisasi, vol 11, no.3, pp 179-188, 2020.

D. A. Susesti dan E.T. Wahyuningtyas, "Pendapatan Saham Abnormal Pada Masa Tidak Pandemi Dan Pandemi Covid-19: Studi Pada Subsektor Farmasi dan Telekomunikasi", Accounting and Management Journal, vol.5, no.1, pp 69-79, 2021.

D. Tambunan, "Investasi Saham di Masa Pandemi COVID-19", Widya Cipta: Jurnal Sekretari dan Manajemen), vol .4, no .2, pp 117-123, 2020.

PT Bursa Efek Indonesia (BEI), Indeks Saham, (2020). [Online]. Available: https://www.idx.co.id/produk/indeks/. [Accessed 18 Mei 2021].

D. C. Montgomery, C.L. Jennings dan M. Kulahci, “Introduction to time series analysis and forecasting”, John Wiley & Sons, 2015.

C. Uwilingiyimana, J. Munga’tu dan J. D. D. Harerimana, "Forecasting Inflation in Kenya Using Arima-Garch Models, " International Journal of Management and Commerce Innovations, vol.3, no.2, pp 15-27, 2015.

B. M.A. Abdulrahman, A.Y.A Ahmed, dan A.E.Y. Abdellah, "Forecasting of Sudan Inflation Rates using ARIMA Model," International Journal of Economics and Financial Issues, vol. 8, no.3, pp 17-22, 2018.

S. F. Ramli, M. Firdaus, H. Uzair, M. Khairi dan A. Zharif, "Prediction of the unemployment rate in Malaysia,” International Journal of Modern Trends in Social Sciences, vol. 1, pp 38-44, 2018.

M. Almasarweh dan S. A. Wadi, "ARIMA Model in Predicting Banking Stock Market Data," Modern Applied Science, vol. 12, 2018.

Y. Wang, Z. Shen dan Y. Jiang, "Comparison of ARIMA and GM (1, 1) models for prediction of hepatitis B in China," PloS one,vol. 13, no.9, 2018.

Z. Amry dan B. Halomoan, "ARIMA Model Selection for Composite Stock Price Index in," International Journal of Accounting and Finance Studies, vol. 2, 2019.

B. Y. Pandji, Indwiarti dan A.A. Rohmawati, "Perbandingan Prediksi Harga Saham dengan model ARIMA dan Artificial Neural Network," Indonesia Journal on Computing (Indo-JC), vol. 4, no.2, pp 189-198, 2019.

B. Dhyani, M. Kumar, P. Verma dan A. Jain, “Stock Market Forecasting Technique using Arima Model,” International Journal of Recent Technology and Engineering, vol. 8, no. 6, 2020.

A.A.A. Shokeralla, F.A.I.A. Sameeh dan A.G.M. Musa, “Prediction the daily number of confirmed cases of COVID-19 in Sudan with ARIMA and Holt Winter exponential smoothing,” International Journal of Development Research, vol. 10, no. 08, pp 39408-39413, 2020.

M. I. Haque dan A.R. Shaik, "Predicting Crude Oil Prices During a Pandemic: A Comparison of Arima and Garch Models," Montenegrin Journal of Economics, vol. 1, no.1, pp 197-207, 2021.

L. Moftakhar, M. Seif dan M.S. Safe, "Exponentially increasing trend of infected patients with COVID-19 in Iran: a comparison of neural network and ARIMA forecasting models," Iranian Journal of Public Health, vol. 49, Suppl 1, pp 92-100, 2020.

Data Historis IDX 30 Index IDX30 (JKIDX30). (2020). [Online]. Available: https://id.investing.com/indices/idx-30-historical-data. [Accessed 18 Mei 2021].

P. Ramos, N. Santos dan R. Rebelo, "Performance of state space and ARIMA models for consumer retail sales forecasting," Robotics and computer-integrated manufacturing, vol. 34, pp 151-163, 2015.

Information
PDF
637 times PDF : 969 times