KLASIFIKASI TUMOR JINAK DAN TUMOR GANAS PADA CITRA MAMMOGRAM MENGGUNAKAN GRAY LEVEL CO-OCCURRENCE MATRIX (GLCM) DAN SUPPORT VECTOR MACHINE (SVM)
Fakultas Teknologi Industri Universitas Gunadarma
Indonesia
Article Submitted: 22 September 2021
Article Published: 07 November 2021
Abstract
Keywords
References
World Health Organization, “Cancer Today: Data and Methods”. Global Cancer Observatory (GCO), 2018. [Online]. Available: http://gco.iarc.fr/. [Accessed: February 20, 2020]
Kementerian Kesehatan Republik Indonesia, “Hari Kanker Sedunia 2019”, Jan 31, 2019. [Online]. Available: https://www.kemkes.go.id/article/view/19020100003/hari-kanker-sedunia-2019.html. [Accessed: February 20, 2020]
Madenda, Pengolahan Citra dan Video Digtial. Penerbit Erlangga, 2015
M. Wisudawati, “Metode Identifikasi Tumor Jinak dan Tumor Ganas Pada Citra Mammogram Berdasarkan Pada Fitur Tekstur Massa Menggunakan Wavelet-GLCM dan Jaringan Saraf Tiruan”, Disertasi, Universitas Gunadarma, 2020.
Biswas, A. Nath, and S. Roy, “Mammogram classification using gray-level co-occurrence matrix for diagnosis of breast cancer”, International Conference on Micro-Electronics and Telecommunication Engineering (ICMETE), pages 161–166. 2016. DOI: 10.1109/ICMETE.2016.85
M. Wisudawati, S. Madenda, E. P. Wibowo, A. A. Abdullah. “Feature extraction optimization with combination 2D discrete wavelet transform and gray level co-occurrence matrix for classifying normal and abnormal breast tumors”, Modern Applied Science 2020; vol. 14 no. 5, pp. 51-62. DOI:10.5539/mas.v14n5p51
M. Wisudawati, S. Madenda, E. P. Wibowo, A. A. Abdullah. “Benign and malignant breast tumors classification based on texture analysis and backpropagation neural network”. Computer Optics 2020, vol. 45 no. 2, pp. 227- 234. DOI: 10.18287/2412-6179-CO-769
M. Salve, “Mammographic image classification using gabor wavelet”. International Research Journal of Engineering and Technology (IRJET), vol. 03 no. 03 Mar-2016, pp. 202-207.
S. Sharifah, R. Sallehuddin, and N. Azizah, “Cancer Detection Using Artificial Neural Network and Support Vector Machine: A Comparative Study,” Jurnal Teknologi, vol. 65 no. 1, pp. 73–81, 2018.
DOI: 11113/jt.v65.1788
Verma, A. Kumar., S., Kumar, “Breast Cancer Prediction Using Support Vector Machine”. International Research Journal of Engineering and Technology (IRJET), vol. 06 no. 04 April-2019, pp. 2640-2643.
B., Halls, S. B. “Potentially malignant microcalcification by texture”. Oct 24, 2019. [Online]. Available: https://breast-cancer.ca/malcalctex/
Radiopaedia, “Birads: mammography. in breast imaging reporting and data system: Bi-rads atlas”. ACR American College of Radiology. Sept 29, 2021. [Online]. Available: https://radiopaedia.org/articles/breast-imaging-reporting-and-data-system-bi-rads#:~:text=BI%2DRADS%20(Breast%20Imaging%2D,mammography%2C%20ultrasound%2C%20and%20MRI.
Hall-Beyer, “Glcm texture: A tutorial v. 3.0”, March 2017. DOI : 10.13140/RG.2.2.12424.21767.
Haralick, “Statistical and structural approaches to texture”. Published in IEEE, Proceedings, vol 67 no. 5 pp.786–804. 2015.
Gorunescu, Florin. “Data Mining: Concepts, Models, and Techniques”. Verlag Berlin Heidelberg: Springer. Vol 12, 2011, DOI: 10.1007/978-3-642-19721-5.