MODEL AUTOREGRESSIVE INTEGRATED MOVING AVERAGE (ARIMA) DALAM PERAMALAN NILAI HARGA SAHAM PENUTUP INDEKS LQ45
Universitas Gunadarma
Indonesia
Universitas Gunadarma
Indonesia
Abstract
Data indeks LQ45 dapat digunakan membantu manajer investasi, investor ataupun calon investor terkait dalam proses perencanaan dan proses pengambilan keputusan dalam membeli ataupun menjual saham. Oleh karena itu data LQ45 memiliki peran penting dalam melakukan peramalan untuk mencapai tujuan tersebut. Peramalan deret waktu (time series) menggunakan penerapan model Autoregressive Integrated Moving Average (ARIMA) untuk meramalkan nilai harga saham penutup dalam Indeks LQ45 pada data mingguan. Data yang digunakan merupakan data dari 25 November 2019 sampai dengan 30 November 2020. Hasil pengujian model terbaik adalah ARIMA(1,1,1). Model ARIMA(1,1,1) terpilih karena memenuhi asumsi dan didukung oleh nilai Adjusted R-squared, nilai S.E. of regression, Akaike Info Criterion dan Schwarz Criterion. Hasil peramalan jangka pendek selama 2 bulan ke depan (7 Desember 2020 sampai 25 Januari 2021) yang didapat dari model ARIMA(1,1,1) mendekati data aktual dengan nilai Mean Absolute Percentage Error (MAPE) yang paling kecil yaitu 18.41269.
Keywords
References
M. Abubakar, Belajar Investasi Saham: Low Risk For Maximum Profit In Indonesia Stock Exchange, Jakarta: BSK Capital, 2020.
Kasmir, Studi Kelayakan Bisnis, Jakarta: Prenada Media, 2015.
S. Luo, F. Yan, D. Lai, W. Wui and F. Lu, "Using ARIMA Model to Fit and Predict Index of Stock Price Based on Wavelet De-Noising," International Journal of Science and Technology, vol. 9, pp. 317-326, 2016.
M. Almasarweh and S. A. Wadi, "ARIMA Model in Predicting Banking Stock Market Data," Modern Applied Science, vol. 12, 2018.
Z. Amry and B. H. Siregar, "ARIMA Model Selection for Composite Stock Price Index in," International Journal of Accounting and Finance Studies, vol. 2, 2019.
M. Ashik and S. Kannan., "Forecasting Nifty Bank Sectors Stock Price Using ARIMA Model," International Journal of Creative Research Thoughts, vol. 5, no. 4, 2017.
B. Dhyani, M. Kumar, P. Verma and A. Jain, "Stock Market Forecasting Technique using Arima Model," International Journal of Recent Technology and Engineering, vol. 8, no. 6, 2020.
A. Edward and JyothiManoj, "Forecast Model Using ARIMA for Stock Prices of Automobile Sector," International Journal of Research in Finance and Marketing, vol. 6, no. 4, 2016.
A. Jadhav and K.B.Kamble, "Prediction of Stock prices in Oil Sectors using ARIMA Model," International Journal of Mathematics Trends and Technology, vol. 51, no. 4, 2017.
R. Jin, S. Wang, F. Yan and J. Zhu, "The Application of ARIMA Model in 2014 Shanghai," Science Journal of Applied Mathematics and Statistics, vol. 3, pp. 199-203, 2015.
S. A. Wadi, M. Almasarweh and A. A. Alsaraireh, "Predicting Closed Price Time Series Data Using ARIMA Model," Modern Applied Science, vol. 12, 2018.
S. T. Wahyudi, "The ARIMA Model for the Indonesia Stock Price," International Journal of Economics and Management, vol. 11, pp. 223 – 236 , 2017.