KLASIFIKASI PENGADUAN LARAS ONLINE BERBASIS TEXT MINING MENGGUNAKAN ALGORITMA K-NEAREST NEIGHBOR DAN NAÏVE BAYES
Abstract
Laras Online adalah fasilitas pada Pemkab Bogor yang diperuntukkan bagi masyarakat terutama warga Kabupaten Bogor sebagai wadah aspirasi dan pengaduan. Seiring dengan jumlah pengaduan yang masuk sangat banyak sehingga mengakibatkan waktu yang lebih lama yang digunakan oleh petugas admin dalam memilah kemudian menentukan unit tujuan pengaduan. Penelitian ini bertujuan untuk membandingkan performansi klasifikasi dokumen pengaduan pada situs Laras Online menggunakan algoritma K-Nearest Neighbor (KNN) dan Naïve Bayes Classifier (NBC). Penelitian dilakukan dengan cara mengumpulkan dokumen pengaduan, melakukan preprocessing, pembobotan kata, klasifikasi, dan pengujian. Pengujian menggunakan cross validation dengan parameter k-fold=10 dan confusion matrix berdasarkan nilai accuracy, precission, recall, dan score-f1. Hasil pengujian terhadap 360 dataset menunjukkan bahwa algoritma NBC lebih baik dari algoritma KNN dengan nilai k=3, k=5, k=7, dan k=9 untuk mengklasifikasikan dokumen pengaduan ke dalam 6 kategori. Hasil klasifikasi menggunakan algoritma NBC memberikan nilai accuracy sebesar 79,16% dengan nilai precission tertinggi pada 2 kategori yaitu Dinsos 91,30% dan SatpolPP 66,80%, nilai recall tertinggi pada 4 kategori yaitu Disdukcapil 89,90%, Dislinghidup 88,40%, Dispupr 93,20%, dan Dishub 76,50%, serta nilai score-f1 tertinggi pada 4 kategori yaitu Disdukcapil sebesar 82,10%, Dislinghidup 82,90%, Dinsos 88,90%, dan Dishub 81,20%.
Keywords
References
Dinas Komunikasi dan Informatika Kabupaten Bogor, “Layanan Aspirasi Online.” https://diskominfo.bogorkab.go.id/laras-online/ (accessed Jan. 02, 2021).
D. Ariyanti, K. Iswardani, U. Panca, and M. Probolinggo, “Teks Mining untuk Klasifikasi Keluhan Masyarakat Pada Pemkot Probolinggo Menggunakan Algoritma Naïve Bayes,” J. IKRA-ITH Inform., vol. 4, no. 3, pp. 125–132, 2020.
H. P. Hadi and T. S. Sukamto, “Klasifikasi Jenis Laporan Masyarakat Dengan K-Nearest Neighbor Algorithm,” JOINS (Journal Inf. Syst., vol. 5, no. 1, pp. 77–85, 2020, doi: 10.33633/joins.v5i1.3355.
A. Indriani, “Analisa Perbandingan Metode Naïve Bayes Classifier Dan K-Nearest Neighbor Terhadap Klasifikasi Data,” Sebatik, vol. 24, no. 1, pp. 1–7, 2020, doi: 10.46984/sebatik.v24i1.909.
I. K. Hamdani Asril, Mustakim, “Klasifikasi Dokumen Tugas Akhir Berbasis Text Mining menggunakan Metode Naïve Bayes Classifier dan K-Nearest Neighbor,” Semin. Nas. Teknol. Inf. Komun. dan Ind., vol. 0, no. 0, pp. 2579–5406, 2019, [Online]. Available: http://ejournal.uin-suska.ac.id/index.php/SNTIKI/article/view/7995.
V. Kalra and R. Aggarwal, “Importance of Text Data Preprocessing & Implementation in RapidMiner,” Proc. First Int. Conf. Inf. Technol. Knowl. Manag., vol. 14, pp. 71–75, 2018, doi: 10.15439/2017km46.
N. G. Yudiarta, M. Sudarma, and W. G. Ariastina, “Penerapan Metode Clustering Text Mining Untuk Pengelompokan Berita Pada Unstructured Textual Data,” Maj. Ilm. Teknol. Elektro, vol. 17, no. 3, p. 339, 2018, doi: 10.24843/mite.2018.v17i03.p06.
P. Bafna, D. Pramod, and A. Vaidya, “Document clustering: TF-IDF approach,” Int. Conf. Electr. Electron. Optim. Tech. ICEEOT 2016, no. November, pp. 61–66, 2016, doi: 10.1109/ICEEOT.2016.7754750.
D. Berrar, “Cross-validation,” Encycl. Bioinforma. Comput. Biol. ABC Bioinforma., vol. 1–3, no. April, pp. 542–545, 2018, doi: 10.1016/B978-0-12-809633-8.20349-X.
A. M. Molinaro, R. Simon, and R. M. Pfeiffer, “Prediction error estimation: A comparison of resampling methods,” Bioinformatics, vol. 21, no. 15, pp. 3301–3307, 2005, doi: 10.1093/bioinformatics/bti499.
D. Yuliana and C. Supriyanto, “Klasifikasi Teks Pengaduan Masyarakat Dengan Menggunakan Algoritma Neural Network,” UPI YPTK J. KomTekInfo, vol. 5, no. 3, pp. 92–116, 2019.
L. A. Andika, P. A. N. Azizah, and R. Respatiwulan, “Analisis Sentimen Masyarakat terhadap Hasil Quick Count Pemilihan Presiden Indonesia 2019 pada Media Sosial Twitter Menggunakan Metode Naive Bayes Classifier,” Indones. J. Appl. Stat., vol. 2, no. 1, p. 34, 2019, doi: 10.13057/ijas.v2i1.29998.