TINJAUAN LITERATUR SISTEMATIS PENDEKATAN DEEP LEARNING UNTUK DETEKSI DAN PERHITUNGAN POHON KELAPA SAWIT
Universitas Budi Luhur
Indonesia
Universitas Budi Luhur
Indonesia
Universitas Budi Luhur
Indonesia
Article Submitted: 13 February 2025
Article Published: 02 May 2025
Abstract
Keywords
References
E. Onoja, S. Chandren, F. I. Abdul Razak, N. A. Mahat, and R. A. Wahab, “Oil Palm (Elaeis guineensis) Biomass in Malaysia: The Present and Future Prospects,” Aug. 01, 2019, Springer Netherlands. doi: 10.1007/s12649-018-0258-1.
D. Khatiwada, C. Palmén, and S. Silveira, “Evaluating the palm oil demand in Indonesia: production trends, yields, and emerging issues,” Biofuels, vol. 12, no. 2, pp. 135–147, 2021, doi: 10.1080/17597269.2018.1461520.
A. Abubakar, S. Kasim, M. Y. Ishak, and M. K. Uddin, “Maximizing Oil Palm Yield: Innovative Replanting Strategies for Sustainable Productivity,” Oct. 01, 2023, Bilingual Publishing Group. doi: 10.30564/jees.v5i2.5904.
I. N. Md Rodi and S. Daliman, “Optimizing Oil Palm Tree Inventory Management with Advanced Drone-Based Image Recognition Techniques,” Malaysian Journal of Bioengineering and Technology (MJBeT), vol. 1, no. 1, pp. 66–81, Jun. 2024, doi: 10.70464/mjbet.v1i1.1274.
N. L. Rane, M. Paramesha, S. P. Choudhary, and J. Rane, “Partners Universal International Innovation Journal (PUIIJ) Artificial Intelligence, Machine Learning, and Deep Learning for Advanced Business Strategies: A Review,” 2024, doi: 10.5281/zenodo.12208298.
W. Mengist, T. Soromessa, and G. Legese, “Method for conducting systematic literature review and meta-analysis for environmental science research,” MethodsX, vol. 7, p. 100777, Feb. 2020, doi: 10.1016/j.mex.2019.100777.
E. A. Felix and S. P. Lee, “Systematic literature review of preprocessing techniques for imbalanced data,” IET Software, vol. 13, no. 6, pp. 479–496, Dec. 2019, doi: 10.1049/iet-sen.2018.5193.
W. Li, R. Dong, H. Fu, and L. Yu, “Large-scale oil palm tree detection from high-resolution satellite images using two-stage convolutional neural networks,” Remote Sens (Basel), vol. 11, no. 1, Jan. 2019, doi: 10.3390/rs11010011.
J. Zheng et al., “Cross-regional oil palm tree counting and detection via a multi-level attention domain adaptation network,” ISPRS Journal of Photogrammetry and Remote Sensing, vol. 167, pp. 154–177, Sep. 2020, doi: 10.1016/j.isprsjprs.2020.07.002.
J. Zheng et al., “Growing status observation for oil palm trees using Unmanned Aerial Vehicle (UAV) images,” ISPRS Journal of Photogrammetry and Remote Sensing, vol. 173, pp. 95–121, Mar. 2021, doi: 10.1016/j.isprsjprs.2021.01.008.
J. Zheng, W. Wu, S. Yuan, H. Fu, W. Li, and L. Yu, “Multisource-Domain Generalization-Based Oil Palm Tree Detection Using Very-High-Resolution (VHR) Satellite Images,” IEEE Geoscience and Remote Sensing Letters, vol. 19, 2022, doi: 10.1109/LGRS.2021.3061726.
K. Yarak, A. Witayangkurn, K. Kritiyutanont, C. Arunplod, and R. Shibasaki, “Oil palm tree detection and health classification on high‐resolution imagery using deep learning,” Agriculture (Switzerland), vol. 11, no. 2, pp. 1–17, Feb. 2021, doi: 10.3390/agriculture11020183.
Y. C. Putra, A. W. Wijayanto, and G. A. Chulafak, “Oil palm trees detection and counting on Microsoft Bing Maps Very High Resolution (VHR) satellite imagery and Unmanned Aerial Vehicles (UAV) data using image processing thresholding approach,” Ecol Inform, vol. 72, Dec. 2022, doi: 10.1016/j.ecoinf.2022.101878.
C. C. Lee, V. C. Koo, T. S. Lim, Y. P. Lee, and H. Abidin, “A multi-layer perceptron-based approach for early detection of BSR disease in oil palm trees using hyperspectral images,” Heliyon, vol. 8, no. 4, Apr. 2022, doi: 10.1016/j.heliyon.2022.e09252.
M. A. A. Asming, A. M. Ibrahim, and I. M. Abir, “Processing and classification of landsat and sentinel images for oil palm plantation detection,” Remote Sens Appl, vol. 26, Apr. 2022, doi: 10.1016/j.rsase.2022.100747.
H. Wibowo, I. S. Sitanggang, M. Mushthofa, and H. A. Adrianto, “Large-Scale Oil Palm Trees Detection from High-Resolution Remote Sensing Images Using Deep Learning,” Big Data and Cognitive Computing, vol. 6, no. 3, Sep. 2022, doi: 10.3390/bdcc6030089.
S. Samuel, K. R. Prilianti, H. Setiawan, and P. Mimboro, “Metode Deteksi Pokok Pohon Secara Automatis pada Citra Perkebunan Sawit Menggunakan Model Convolutional Neural Network (CNN) pada Perangkat Lunak Sistem Informasi Geografis,” Jurnal Teknologi Informasi dan Ilmu Komputer, vol. 9, no. 7, pp. 1689–1698, Dec. 2022, doi: 10.25126/jtiik.2022976772.
Y. C. Putra and A. W. Wijayanto, “Automatic detection and counting of oil palm trees using remote sensing and object-based deep learning,” Remote Sens Appl, vol. 29, Jan. 2023, doi: 10.1016/j.rsase.2022.100914.
D. O. Pribadi et al., “Mapping smallholder plantation as a key to sustainable oil palm: A deep learning approach to high-resolution satellite imagery,” Applied Geography, vol. 153, Apr. 2023, doi: 10.1016/j.apgeog.2023.102921.
S. T. Deyosky and M. I. Taftazani, “Perhitungan Jumlah Pohon Kelapa Sawit Pada Citra Ortofoto Menggunakan Algoritma Template Matching dan Faster R-CNN,” Journal of Geospatial Science and Technology, vol. 1, no. 1, pp. 44–51, Dec. 2023, doi: 10.22146/jgst.v1i1.5423.
M. R. Rahman, R. Kusumawati, and F. Fatimah, “Deteksi Objek Menghitung Pohon Kelapa Sawit Menggunakan Metode Deep Learning,” BINA: JURNAL PEMBANGUNAN DAERAH, vol. 2, no. 1, pp. 45–51, Aug. 2023, doi: 10.62389/bina.v2i1.51.
D. Yana Armanto, S. Agustian Hudjimartsu, and E. Hermawan, “Identifikasi Perhitungan Pohon Kelapa Sawit Otomatis Dengan Menggunakan Metode Convolutional Neural Network (CNN),” JATI (Jurnal Mahasiswa Teknik Informatika), vol. 8, no. 3, pp. 2648–2654, May 2024, doi: 10.36040/jati.v8i3.9525.
D. S. Prasvita, M. M. Santoni, and N. Falih, “Deteksi Pohon Kelapa Sawit dengan Pendekatan Deep Learning pada Citra Multispectral di Indonesia,” The Indonesian Journal of Computer Science, vol. 13, no. 2, Apr. 2024, doi: 10.33022/ijcs.v13i2.3753.
K. Kipli et al., “Deep learning applications for oil palm tree detection and counting,” Oct. 01, 2023, Elsevier B.V. doi: 10.1016/j.atech.2023.100241.