ANALISIS KECURANGAN DALAM MENGHADAPI PENIPUAN DI SITUS E-COMMERCE MENGGUNAKAN RANDOM FOREST ; PENDEKATAN MACHINE LEARNING BERBASIS AI

Ummi Kolbia
orcid
http://miikolbia.com
Sekolah Tinggi Ilmu Komputer Cipta Karya Informatika
Indonesia
Nova Dahliyanti
Sekolah Tinggi Ilmu Komputer Cipta Karya Informatika
Indonesia

Abstract

In this rapidly growing digital era, the phenomenon of e-commerce has become a major highlight, the rapid growth of e-commerce has attracted more and more users. However, cases of sophisticated and dynamic fraud are increasing as the volume of transactions increases. This phenomenon not only poses a risk of financial loss for buyers and sellers but also threatens the trust that is so important in the e-commerce industry. To solve this problem, the author uses a random Forest AI-based Machine Learning approach in analyzing and finding fraud patterns to deal with fraud on e-commerce sites. The Random Forest model was chosen because of its excellent ability to handle complex e-commerce transaction data, including the ability to find non-linear patterns, its resistance to overfitting, and its scalability on large datasets. This model is expected to identify suspicious fraud patterns in e-commerce transactions. The method will involve data processing, feature selection, and model training using a dataset that includes ecommerce transactions. The results of this research are expected to contribute to a better understanding of fraud on e-commerce sites in the face of future fraud. Effective fraud detection is also expected to reduce the losses caused by fraud on e-commerce sites and protect users from the risk of fraud.

Keywords
Fraud, E-Commerce, Random Forest, Machine Learning.
References

K. C. Laudon and C. G. Traver, “E - commerce”.

Rahmati. 2009, “PEMANFAATAN E-COMMERCE DALAM BISNIS DI INDONESIA.”

R. J. Bolton and D. J. Hand, “Statistical fraud detection: A review,” Stat. Sci., vol. 17, no. 3, pp. 235–255, 2002, doi: 10.1214/ss/1042727940.

H. C. Marwi and I. Oskar, “Analysis of Increasing Types of Online…. Analysis of Increasing Types of Online Fraud and Level of Public Awareness in Indonesia,” vol. 4, no. November, pp. 70–84, 2023.

Suci Amaliah, M. Nusrang, and A. Aswi, “Penerapan Metode Random Forest Untuk Klasifikasi Varian Minuman Kopi di Kedai Kopi Konijiwa Bantaeng,” VARIANSI J. Stat. Its Appl. Teach. Res., vol. 4, no. 3, pp. 121–127, 2022, doi: 10.35580/variansiunm31.

D. T. Ananto et al., “Edukasi dan Pelatihan Pengenalan Machine Learning dan Computer Vision Untuk Mengeksplorasi Potensi Visual,” Pros. Semin. Nas. Pengabdi. Masy. LPPM UMJ, vol. 1, no. 1, pp. 1–8, 2023, [Online]. Available: https://jurnal.umj.ac.id/index.php/semnaskat/article/view/19491

S. J. Russell et al., “Artificial Intelligence”.

V. Van Vlasselaer et al., “APATE: A novel approach for automated credit card transaction fraud detection using network-based extensions,” Decis. Support Syst., vol. 75, pp. 38–48, 2015, doi: 10.1016/j.dss.2015.04.013.

https://apjii.or.id/berita/d/apjii-jumlah-pengguna-internet-indonesia-tembus-221-juta-orang

Purnama Ramadani Silalahi1 , Aisy Salwa Daulay2 , Tanta Sudiro Siregar3 , Aldy Ridwan4, Analisis Keamanan Transaksi E-commerce Dalam Mencegah Penipuan Online Jurnal Manajemen, Bisnis dan Akuntansi Vol.1, No.4 November 2022 e-ISSN: 2963-5292; p-ISSN: 2963-4989, Hal 224-235

C. Tejasri*1, CH Sai Ushanth Aryan*2, D. Deekshith*3, Arrolla Chintu*4, FRAUD DETECTION IN E-COMMERCE USING MACHINE LEARNING e-ISSN: 2582-5208 International Research Journal of Modernization in Engineering Technology and Science Volume:04/Issue:06/June-2022 Impact Factor- 6.752 www.irjmets.com

Adi Saputra1 , Suharjito2 Fraud Detection using Machine Learning in e-commerce (IJACSA) International Journal of Advanced Computer Science and Applications, Vol. 10, No. 9, 2019

Neha Purohit and Dr. Rajeev G. Vishwakarma “Credit Card Fraud Detection Using Machine Learning Algorithms Using Python” Technology Webology (ISSN: 1735-188X) Volume 18, Number 6, 2021

https://www.cnbcindonesia.com /tech/20230302140853-37-418315/korban-penipuan-ecommerce-ri-makin-banyak-cek-data-terbaru

Merih Bozbura1 , Hunkar C. Tunc2 , Miray Endican Kusak1 and C. Okan Sakar3 “Detection of e-commerce Anomalies using LSTM-recurrent Neural Networks” DOI: 10.5220/0007924502170224 In Proceedings of the 8th International Conference on Data Science, Technology and Applications (DATA 2019), pages 217-224 ISBN: 978-989-758-377-3

Erlina Permata Sari, Deyana Annisa Febrianti, Riska Hikmah Fauziah “Fenomena Penipuan Transaksi Jual Beli Online Melalui Media Baru Berdasarkan Kajian Space Transition Theory” DEVIANCE JURNAL KRIMINOLOGI Volume 6 Nomor 2 Desember 2022 Hal: 153-168 DOI: http://dx.doi.org/10.36080/djk.1882

Paulin K. Kamuangu “A Review on Financial Fraud Detection using AI and Machine” Journal of Economics, Finance and Accounting Studies ISSN: 2709-0809 DOI: 10.32996/jefas

Information
PDF
364 times PDF : 376 times