PREDIKSI TINGKAT KUALITAS UDARA DENGAN PENDEKATAN ALGORITMA K-NEAREST NEIGHBOR
Universitas Indonesia
Indonesia
Universitas Islam Indonesia
Indonesia
Abstract
Air is the source of life for living things. However, in recent years the decline in air quality has become a serious problem that urgently needs to be addressed. The Air Pollution Standard Index (ISPU) is an indicator that can be used to determine the condition of ambient air quality in a particular location. Yogyakarta is one of the major cities in Indonesia with serious air pollution problems in recent years. This research aims to predict air quality in Yogyakarta City based on ISPU data using data mining techniques and classification methods. The algorithm used in prediction is K-Nearest Neighbor (K-NN), which classifies new objects based on their nearest neighbors. Evaluation of the algorithm model is done by measuring accuracy, precision, recall, and f-measure for the value of K = 5. The test results show that the value of K = 5 provides good performance with an accuracy of 99% which is for the "Good" category producing 100% precision, 99% recall, and 100% f-measure, while the "Moderate" category produces 98% precision, 100% recall, and 99% f-measure.
Keywords
References
World Health Organization, “Air Pollution,” 2023.
https://www.who.int/health-topics/air-pollution#tab=tab_1 (accessed Sep. 20, 2023).
Kementerian Lingkungan Hidup dan Kehutanan, Pengendalian Pencemaran Udara. 2016.
Pemerintah Kota Yogyakarta, “Program Langit Biru Kendalikan Pencemaran Udara di Kota Yogya,” 2016. https://warta.jogjakota.go.id/detail/inde x/4669 (accessed Sep. 28, 2023).
Kementerian Lingkungan Hidup dan Kehutanan, “Indeks Standar Pencemar Udara (ISPU) sebagai Informasi Mutu Udara Ambien di Indonesia,” 2020. https://ditppu.menlhk.go.id/portal/read/ indeks-standar-pencemar-udara-ispu- sebagai-informasi-mutu-udara-ambien- di-indonesia (accessed Sep. 22, 2023).
Menteri Lingkungan Hidup dan Kehutanan RI, “Permen LHK Nomor 14 Tahun 2020 Tentang Indeks Standar Pencemar Udara (ISPU),” 2020. https://ditppu.menlhk.go.id/portal/uploa ds/news/1600940556_P_14_2020_ISPU_menlhk_07302020074834.pdf
Universitas Pembangunan Jaya, Konsep Data Mining. 2008. [Online]. Available: https://ocw.upj.ac.id/files/Handout-
TIF311-DM-1.pdf
N. Hasdyna and R. K. Dinata, “Machine Learning.” 2020. [Online]. Available: http://repository.unimal.ac.id/id/eprint/ 6707
Lembaga Penelitian dan Pengabdian Masyarakat Universitas Medan Area, “Algoritma K-Nearest Neighbors (KNN) – Pengertian dan Penerapan,” 2023.
https://lp2m.uma.ac.id/2023/02/16/algo ritma-k-nearest-neighbors-knn- pengertian-dan-penerapan/ (accessed Oct. 02, 2023).
A. Nugroho, I. Asror, and Y. F. A. Wibowo, “Klasifikasi Tingkat Kualitas Udara DKI Jakarta Berdasarkan Open Government Data Menggunakan Algoritma Random Forest,” eProceedings Eng., vol. 10, No. 2, no. 2, pp. 1824–1834, 2023, [Online]. Available: https://openlibrarypublications.telkomuniversity.ac.id/index.php/engineering/article/view/20030%0Ahttps://openlibrarypublications.telkomuniversiyy.ac.id/in dex.php/engineering/article/view/20030/19395
A. A. H. Kirono, I. Asror, and ..., “Klasifikasi Tingkat Kualitas Udara Dki Jakara Dengan Algoritma Naive Bayes,” eProceedings …, vol. Vol. 9, No, no. 3, pp. 1962–1969, 2022, [Online]. Available:
https://openlibrarypublications.telkomuniversity.ac.id/index.php/engineering/article/view/18002%0Ahttps://openlibrarypublications.telkomuniversity.ac.id/in dex.php/engineering/article/view/18002/17631
A. Amalia, A. Zaidiah, and I. N. Isnainiyah, “Prediksi Kualitas Udara Menggunakan Algoritma K-Nearest Neighbor,” J. Ilm. Penelit. dan Pembelajaran Inform., vol. 7, no. 2, pp. 496–507, 2022, doi:
33387/jiko.v4i2.2871.
R. Aljabar and D. Kusumaningsih, “Penerapan Algoritma Klasifikasi K- Nearest Dengan Menggunakan Hasil Nilai Try Out Siswa Sekolah Menengah Kejuruan Berbasis Desktop Pada SMK Bina Informatika Bintaro,” Skanika, vol. 1, no. 1, pp. 136–142, 2018.
W. Wahyu Pribadi, A. Yunus, and A. S. Wiguna, “Perbandingan Metode K- Means Euclidean Distance Dan Manhattan Distance Pada Penentuan Zonasi Covid-19 Di Kabupaten Malang,” JATI (Jurnal Mhs. Tek. Inform., vol. 6, no. 2, pp. 493–500, 2022, doi:10.36040/jati.v6i2.4808.
M. Fajri and A. Primajaya, “Komparasi Teknik Hyperparameter Optimization pada SVM untuk Permasalahan Klasifikasi dengan Menggunakan Grid Search dan Random Search,” J. Appl. Informatics Comput., vol. 7, no. 1, pp. 14–19, 2023, doi:10.30871/jaic.v7i1.5004.
P. Chaurasia, “Confusion Matrix,” 2016. https://mgcub.ac.in/pdf/material/20200 429020322e5dac20f58.pdf (accessed Oct. 02, 2023).