MARKETING STRATEGY FOR THE DETERMINATION OF STAPLE CONSUMER PRODUCTS USING FP-GROWTH AND APRIORI ALGORITHM

Winda Widya Ariestya
Faculty of Computer Science and Information Technology, Gunadarma University
Indonesia
Wahyu Supriyatin
Faculty of Computer Science and Information Technology, Gunadarma University
Indonesia
Ida Astuti
Faculty of Computer Science and Information Technology, Gunadarma University
Indonesia

Abstract

The demand for staple products that vary among customers makes it necessary for the store to determine how the marketing strategy should be. Data mining are known as KDD (Knowledge Discovery in Database) is to digging up valuable knowledge from the data. Research purpose is to identify the right marketing strategy to sales the goods. The marketing strategy is took by analyze how much consumers demand for basic needs. The algorithms used in this research are FP (Frequent Pattern)-Growth and A-priori Algorithm. Finding combinations patterns between itemset using the Association Rule. FP-Growth algorithm is an algorithm that been used to determining a set of data in a data set that often appears on the frequency of the itemset. the KDD stages study are data cleansing, data integration, data selection, data transformation, data mining, pattern evaluation and knowledge presentation. the Testing used Rapidminer software with a minimum confidence value of 0.6 and a minimum support of 0.45. FP-Growth algorithm obtained 5 rule conclusions while Apriori Algorithm obtained 3 rule conclusions. The FP-Growth algorithm make a better decision rules than a priori algorithms in determining of marketing strategies, because it produces more decisions on how the goods sold.

Keywords
Apriori Algorithm; FP-Growth Algorithm; Association Rule; Data Mining; Marketing Strategy
References

Budihartanti, C. (2013). Penerapan data mining berdasarkan asosiasi menggunakan algoritma apriori dalam penentuan pola belanja kitchen appliances. Jurnal Techno Nusa Mandiri, 10(1), 20-28.

Ependi, U., & Putra, A. (2019). Solusi prediksi persediaan barang dengan menggunakan algoritma apriori (studi kasus: regional part depo auto 2000 Palembang). Jurnal Edukasi dan Penelitian Informatika (JEPIN), 5(2), 139-145.

Fajrin, A. A & Maulana, A. (2018). Penerapan data mining untuk analisis pola pembelian konsumen dengan algoritma FP-Growth pada data transaksi penjualan spare part motor. Kumpulan Jurnal Ilmu Komputer (KLIK), 5(1), 27-36.

Mustakim, Herianda, D.M., Ilham, A., Daeng., A. GS, Laumal, F. E., Kurniasih, N., Iskandar, A., Manulangga, G., Iswara, I.B.A.I & Rahim, R. (2018). Market basket analysis using apriori and FP-Growth for analysis consumer expenditure patterns at Berkah Mart in Pekanbaru Riau. In Journal of Physics: Conference Series, 1114(012131), 1-9.

Shalaby, A.H., el letif, D. M., Rezk, A., & Hagag, M. (2015). Suggested marketing strategy using apriori and FP-Growth algorithms in retail sales in Egypt. International Journal Of Computers & Technology, 14(11), 6190-6200. DOI: https://doi.org/10.24297/ijct.v14i11.1807.

Tampubolon, K., Saragih, H., Reza, B., Epicentrum, K., & Asosiasi, A. (2013). Implementasi Data Mining Algoritma Apriori pada sistem persediaan alat-alat kesehatan. Informasi dan Teknologi Ilmiah (INTI), 1(1), 93-106.

Triyanto, W. A. (2014). Association Rule Mining Untuk Penentuan Rekomendasi Promosi Produk. Simetris: Jurnal Teknik Mesin, Elektro dan Ilmu Komputer, 5(2), 121-126.

Information
PDF
1071 times PDF : 742 times