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Abstract 

Leukemia is one of the cancers with the highest mortality rate worldwide; therefore, identifying its 

subtypes is crucial to support accurate diagnosis and effective treatment. The analysis of high-

dimensional gene expression data, such as the CuMiDa dataset, still faces major challenges due to 

overlapping patterns and limited sample sizes. This study proposes the application of Bayesian 

Optimization using Optuna to perform hyperparameter tuning on the Spectral Clustering – K-Means 

method to improve the clustering performance of leukemia subtypes. Four key parameters 

(n_components, affinity method, n_neighbors, and gamma) were optimized through 1,000 

iterations. The best configuration was obtained at n_components = 5 using the Nearest Neighbors 

method with n_neighbors = 6. The resulting Spectral Embedding matrix was then grouped using K-

Means. The results showed that this approach achieved a clustering accuracy of 92,19%, 

outperforming both K-Means and Hierarchical Clustering when applied separately. Heatmap 

visualization demonstrated that the optimized method effectively grouped samples with similar gene 

expression patterns. This study demonstrates that the combination of Spectral Clustering–K-Means 

and Bayesian optimization using Optuna can improve the clustering quality of complex gene 

expression data and open up broader opportunities for application in other bioinformatics studies. 
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Abstrak 

Leukemia merupakan salah satu kanker dengan tingkat kematian tertinggi di dunia sehingga 

identifikasi subtipenya sangat penting untuk mendukung diagnosis dan pengobatan yang tepat. 

Analisis data ekspresi gen berdimensi tinggi, seperti dataset CuMiDa, masih menghadapi tantangan 

besar akibat pola yang saling tumpang tindih dan jumlah sampel yang terbatas. Penelitian ini 

mengusulkan penerapan optimasi Bayesian menggunakan Optuna untuk melakukan penyesuaian 

hyperparameter pada metode Spectral Clustering – K-Means guna meningkatkan performa 

klastering subtipe leukemia. Empat parameter kunci (n_components, affinity method, n_neighbors, 

dan gamma) dioptimasi melalui 1.000 iterasi. Konfigurasi terbaik diperoleh pada n_components = 5 

dengan metode Nearest Neighbors dan n_neighbors = 6. Matriks Spectral Embedding yang 

dihasilkan kemudian dikelompokkan menggunakan K-Means. Hasil penelitian menunjukkan bahwa 

pendekatan ini mencapai akurasi klastering sebesar 92,19%, melampaui K-Means maupun 

Hierarchical Clustering secara terpisah. Visualisasi heatmap membuktikan bahwa metode yang 

dioptimasi ini mampu mengelompokkan sampel dengan pola ekspresi gen yang serupa secara 

efektif. Penelitian ini menunjukkan bahwa kombinasi Spectral Clustering-K-Means dan optimasi 

Bayesian menggunakan Optuna dapat meningkatkan kualitas klastering pada data ekspresi gen yang 

kompleks, serta membuka peluang penerapan lebih luas dalam studi bioinformatika lainnya. 
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1. Pendahuluan  

Leukemia (kanker darah) merupakan salah satu penyakit dengan tingkat kematian 

tertinggi di dunia. Leukemia adalah kanker darah yang menyerang sumsum tulang dan sel 

darah, ditandai dengan proliferasi sel abnormal yang tidak terkendali. Identifikasi subtipe 

leukemia sangat penting karena memengaruhi diagnosis, pengobatan, dan prognosis pasien 

[1]. 

Seiring meningkatnya kompleksitas data biomedis, penerapan teknik machine learning 

dalam analisis data kanker semakin berkembang. Integrasi teknologi Artificial Intelligence 

(AI) melalui metode machine learning dapat mendukung deteksi kanker secara dini dengan 

akurasi yang lebih tinggi, terutama pada dataset medis yang berukuran terbatas [2]. 

Perkembangan teknologi microarray memungkinkan peneliti menganalisis ekspresi ribuan 

gen secara bersamaan sehingga membuka peluang untuk mendeteksi pola molekuler pada 

berbagai jenis leukemia. Namun, data ekspresi gen memiliki tantangan khusus, yaitu dimensi 

yang tinggi, jumlah sampel terbatas, noise yang signifikan, serta pola subtipe yang tumpang 

tindih [3], [4]. 

Salah satu basis data yang mendukung pengembangan metode analisis ekspresi gen 

adalah Curated Microarray Database (CuMiDa). Dataset ini memuat data ekspresi gen 

kanker, termasuk leukemia, yang telah melalui tahap background correction, normalisasi, dan 

anotasi, sehingga banyak digunakan sebagai benchmark penelitian bioinformatika, baik untuk 

metode supervised maupun unsupervised learning [1], [3]. Dengan karakteristik data yang 

kompleks dan berdimensi tinggi, CuMiDa menyediakan landasan ideal bagi penerapan teknik 

klastering untuk mengungkap pola molekuler yang tersembunyi. 

Klastering merupakan pendekatan unsupervised yang dapat digunakan untuk 

menganalisis dataset besar dengan banyak karakteristik dan membagi dataset besar tersebut 

ke dalam kelompok-kelompok kecil atau klaster [5]. Klastering menjadi salah satu pendekatan 

penting dalam bioinformatika untuk mengungkap pola-pola tersembunyi pada data ekspresi 

gen yang kompleks dan berdimensi tinggi. Klastering dikategorikan baik apabila setiap data 

tergabung ke dalam kelompok yang homogen tanpa adanya percampuran antar kelompok [6]. 

Dalam ranah klastering, Spectral Clustering dikenal sebagai pendekatan efektif untuk 

mendeteksi pola klaster non-linear. Spectral Clustering juga memiliki keunggulan utama 

menangani data berdimensi tinggi dengan pola non-konveks yang sulit dipecahkan oleh 

metode klasterisasi tradisional dengan memanfaatkan Graph Structure Learning (GSL) untuk 

membangun graf kemiripan yang optimal sehingga dapat meningkatkan kualitas Spectral 

Embedding dan hasil klasterisasi secara keseluruhan [7]. Sementara itu, pengembangan 

algoritma Improved Automated Spectral Clustering (IASC) berhasil mengatasi keterbatas 

Spectral Clustering konvensional dengan secara otomatis menentukan jumlah klaster melalui 

evaluasi kepadatan dan klasifikasi berbasis sudut kosinus, yang meningkatkan akurasi 

terutama pada data non-konveks [8]. Selain itu, konektivitas graf yang tinggi dengan 

pendekatan multi-view Spectral Clustering berbasis jalur (path-based similarity) terbukti 

tangguh terhadap noise dan outlier dalam aplikasi dunia nyata [9]. Namun, Spectral 

Clustering umumnya memerlukan algoritma lain sebagai tahap post-processing untuk 

mengelompokkan hasil embedding ke klaster akhir dan di bagian inilah K-Means sering 

digunakan karena kemampuannya menangkap struktur klaster sederhana pada ruang 

embedding yang telah direduksi [10]. K-Means mengungkapkan pola alami pada data tanpa 

perlu label atau kategori buatan manusia [11]. Tren terbaru dalam taksonomi algoritma 

klastering menunjukkan bahwa pendekatan graph-based seperti Spectral Clustering semakin 

diminati untuk menangani data berdimensi tinggi dan kompleks, terutama pada data 

kategorikal maupun numerik [12]. 
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Performa Spectral Clustering–K-Means sangat bergantung pada pemilihan 

hyperparameter seperti jumlah klaster (k), skema normalisasi Laplacian, dan parameter kernel 

matriks similaritas. Pemilihan hyperparameter yang tidak optimal dapat menghasilkan klaster 

dengan kualitas rendah atau tidak stabil. Metode tuning tradisional seperti grid search atau 

random search seringkali memakan sumber daya komputasi besar dan tidak efisien untuk 

ruang parameter yang kompleks [4]. Hal ini diatasi denganadopsi optimasi Bayesian  yang 

mampu membangun model probabilistik dari hasil evaluasi sebelumnya dan memilih 

kombinasi hyperparameter berikutnya yang memberikan hasil lebih baik. Secara umum, 

optimasi Bayesian sangat berguna untuk menyelesaikan masalah optimasi yang mahal, seperti 

hyperparameter tuning, desain eksperimen, sampai pemodelan sistem kompleks tanpa harus 

mencoba semua kemungkinan secara manual [13], [14]. 

Optuna adalah alat berbasis Python yang digunakan untuk mencari kombinasi parameter 

terbaik pada model machine learning secara otomatis dan efisien. Optuna, sebagai salah satu 

implementasi optimasi Bayesian, terbukti memiliki trade-off runtime dan skor performa yang 

baik pada kasus Combined Algorithm Selection and Hyperparameter optimization (CASH), 

mengungguli HyperOpt, SMAC, dan Optunity di sebagian besar dataset riil. Fitur-fitur ini 

menjadikan Optuna efektif dan efisien untuk hyperparameter tuning secara otomatis pada 

berbagai model pembelajaran mesin [15]. Framework Optuna, dengan fitur define-by-run 

API, pruning otomatis, dan kemampuan parallelization, menjadi salah satu open-source 

library terkini yang mendukung pendekatan ini secara praktis, fleksibel, dan efisien [16]. 

Hingga saat ini penelitian pada data leukemia CuMiDa telah dilakukanmisalnya 

menggunakan pendekatan Linear Programming (LP) dan teknik feature selection [17]. 

Penelitian lain juga menggunakan metode super-learner yang menggabungkan beberapa model 

dasar dan memakai Random Forest sebagai learner akhir [18]. Namun,  penelitian yang ada 

belum memanfaatkan optimasi Bayesian dengan Optuna untuk hyperparameter tuning 

kombinasi Spectral Clustering–K-Means pada data ekspresi gen leukemia dari CuMiDa. Oleh 

karena itu, penelitian ini bertujuan untuk menguji dan menganalisis lebih mendalam terhadap 

efektivitas kombinasi metode Spectral Clustering–K-Means yang dioptimasi menggunakan 

Bayesian melalui Optuna, untuk mengetahui sejauh mana pendekatan tersebut mampu 

meningkatkan pemisahan dan kualitas klaster pada data ekspresi gen leukemia dari CuMiDa. 

 

2. Metode Penelitian 

Dataset CuMiDa telah melalui tahap prapemrosesan data [3]. Selanjutnya data 

memasuki tahap algoritma Spectral Clustering yang intinya mereduksi dimensi dataset awal, 

disebut Spectral Embedding. Dalam pembentukan Spectral Embedding, penelitian ini 

menggunakan Bayesian untuk mengoptimalkan parameter-parameter dalam Spectral 

Clustering. Matriks hasil Spectral Embedding inilah yang kemudian diklaster menggunakan 

algoritma klastering K-Means.  

 

2.1 Pengumpulan Data 

CuMiDa diperoleh dari Structural Bioinformatics and Computational Biology Lab 

(SBCB) yang terdiri atas 64 sampel data dan 22.285 ekspresi gen leukemia GSE9476. Data 

tersebut dapat diakses di https://sbcb.inf.ufrgs.br/cumida#datasets[19]. Sebagian dataset yang 

digunakan dalam penelitian ini ditunjukkan pada Gambar 1. Dataset telah diketahui terklaster 

menjadi 5 tipe kelas, yaitu AML, PB, Bone-Marrow, PBSC_CD34, dan Bone_Marrow_CD34. 

Distribusi sampel data berdasarkan kelasnya dapat dilihat pada Gambar 2. Telah dilakukan 

penelitian pada data tersebut menggunakan algoritma klastering unsupervised learning: K-

Means dan Hierarchical Clustering (HC) [3] sehingga akan dibandingkan hasil klasteringnya 

menggunakan metode Spectral Clustering–K-Means yang dioptimasi menggunakan Bayesian 

melalui Optuna. 

https://doi.org/10.35760/tr.2025.v30i3.16
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Gambar 1. Dataset dari Ekspresi Microarray Leukemia 

 

 
Gambar 2. Distribusi Sampel Gen berdasarkan Tipe Kelas 

 

2.2 Spectral Clustering 

Pada sebuah himpunan data yang terdiri dari 𝑛-titik, algoritma Spectral Clustering akan 

membentuk 𝑛 ×  𝑛 matriks similaritas dan menghitung eigenvektor dari matriks tersebut. 

Misalkan diberikan sebuah himpunan 𝑛 titik data 𝑥1, 𝑥2, … . , 𝑥𝑛, dengan setiap 𝑥𝑖  ∈  ℝ𝑑, graf 

similaritas 𝐺 = (𝑉, 𝐸) didefinisikan sebagai sebuah graf tak berarah dimana simpul ke-𝑖 
berkorespondesi dengan titik data 𝑥𝑖. Untuk setiap busur (𝑖, 𝑗) ∈ 𝐸, diberikan sebuah bobot 

𝑤𝑖𝑗 ≥ 0, yang mengartikan kemiripan/similaritas dari titik-titik data 𝑥𝑖 dan 𝑥𝑗. Matriks 

𝑊 = (𝑤𝑖𝑗)
𝑖,𝑗=1

𝑛
                      (1) 

disebut matriks similaritas (similarity graph). Spectral Clustering mempartisi data menjadi 𝑘 

kelas yang saling asing (disjoint) sehingga setiap 𝑥𝑖 menjadi anggota di tepat salah satu kelas 

[20]. 

Penelitian ini menggunakan konstruksi graf terhubung penuh (fully connected graph). 

Semua titik akan dihubungkan dengan nilai kemiripan positif antar satu dengan lainnya, dan 

semua busur diberi bobot 𝑠𝑖𝑗. Fungsi similaritas yang digunakan adalah fungsi similaritas 

Gauss, 𝑠(𝑥𝑖, 𝑥𝑗), 

𝑊 = 𝑠(𝑥𝑖 , 𝑥𝑗) = exp (−
‖𝑥𝑖 − 𝑥𝑗‖

2

2𝜎2
)                                               (2) 

dengan parameter 𝜎 menentukan “lebar” dari neighbourhood-nya [21]. 

https://doi.org/10.35760/tr.2025.v30i3.16
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Laplacian ternormalisasi digunakan dalam penelitian ini untuk meminimumkan 

similaritas data antar kelompok dan memaksimumkan similaritas antar data dalam satu 

kelompok. Laplacian ternormalisasi didefinisikan sebagai 

𝐿𝑠𝑦𝑚 ≔ 𝐷−
1
2𝐿𝐷−

1
2 = 1 − 𝐷−

1
2𝑊𝐷−

1
2                                               (3) 

𝐷 merupakan matriks diagonal dimana 𝑑𝑖 menandakan jumlah bobot semua busur yang 

bertetangga dengan simpul ke-𝑖 dan 𝐿 = 𝐷 − 𝑊 [21]. 
Eigenvalue dari matriks Laplacian dihitung. Spectral Clustering menggunakan 

multiplisitas 𝑛 eigenvalue 0 atau mendekati 0 dari Graph Laplacian untuk mendapatkan 

informasi jumlah grup yang dapat dibentuk dari himpunan vertex. Matriks yang berisi 

eigenvector dari n eigenvalue tersebut menjadi representasi data yang selanjutnya akan 

diklastering. 

 

2.3 Hyperparameter Tuning via Optimasi Bayesian  

Optimasi Bayesian membangun model probabilistik untuk mempelajari pola dari hasil 

evaluasi sebelumnya. Kerangka kerja optimasi Bayesian memiliki dua komponen utama. 

Pertama, model perkiraan probabilistik yang terdiri dari distribusi awal (prior) yang 

menangkap perilaku fungsi tujuan yang tidak diketahui dan model observasi yang 

menjelaskan bagaimana data dihasilkan. Kedua, fungsi kerugian (loss function) yang 

menggambarkan seberapa optimal urutan percobaan yang dilakukan. Kerugian yang 

diharapkan akan diminimalkan untuk memilih urutan percobaan yang optimal [14]. Optimasi 

Bayesian memakai model perkiraan yang disebut Gaussian Process untuk memprediksi nilai 

rata-rata (mean) dan seberapa yakin (variansi) prediksi tersebut. Setelah fungsi dievaluasi di 

beberapa titik awal, model ini diperbaharui menggunakan aturan Bayes agar prediksi 

berikutnya makin akurat. Optimasi Bayesian memakai acquisition function, seperti Expected 

Improvement atau Upper Confidence Bound untuk memutuskan di mana harus mencoba lagi 

[22]. 

Optuna adalah sebuah framework modern untuk optimasi hyperparameter secara 

otomatis yang memanfaatkan pendekatan Bayesian. Optuna membantu menemukan 

kombinasi parameter terbaik menggunakan metode define-by-run, artinya membuat ruang 

pencarian parameter secara dinamis saat program berjalan tanpa perlu mendefinisikan 

semuanya di awal. Optuna juga memiliki fitur pruning otomatis yaitu memotong percobaan 

yang tidak menjanjikan sejak awal sehingga menghemat waktu dan sumber daya [16]. 

Dalam tahap ini terdapat empat parameter yang akan dioptimasi menggunakan metode 

Bayesian, yaitu: 

a. n_components: menunjukkan jumlah dimensi output (embedding) yang 

merepresentasikan multiplisitas 𝑛 eigenvalue 0 atau mendekati 0. Artinya, data yang 

berdimensi 𝑘 (banyaknya kolom data) diproyeksikan ke ruang dimensi 𝑛 komponen, 

dengan 𝑛 < 𝑘. Penelitian ini menggunakan 𝑛_𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡𝑠 = 2,3, … ,10. 

b. Affinity: menunjukkan metode yang digunakan untuk membuat graf afinitas 

(similiarity graph). Ada dua metode yang akan dipilih, yaitu Radial Basis Function 

(RBF) dan Nearest Neighbors. Nearest Neighbors adalah metode menghubungkan 

simpul 𝑣𝑖 dengan simpul 𝑣𝑗  jika 𝑣𝑗  termasuk dalam 𝑛 tetangga terdekat dari 𝑣𝑖, 

kemudian busur-busur yang menghubungkan simpul-simpul bertetangga tersebut 

diberikan bobot berdasarkan similaritasnya [21]. Metode ini menghubungkan setiap 

titik data ke 𝑛 tetangga terdekatnya berdasarkan jarak Euclidean [7]. 

• Jika affinity = Nearest Neighbors maka parameter n_neighbours yang dioptimasi, 

yaitu jumlah tetangga terdekat yang digunakan untuk membentuk matriks afinitas 

metode KNN. Penelitian ini menggunakan 𝑛_𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠 = 2,3, … ,10. 

https://doi.org/10.35760/tr.2025.v30i3.16
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RBF adalah metode yang memetakan data dari ruang berdimensi rendah ke ruang 

berdimensi lebih tinggi secara nonlinier, sehingga pola data yang awalnya sulit 

dipisahkan menjadi lebih mudah dipisahkan dengan garis lurus di ruang tersebut [23]. 

• Jika affinity = RBF maka parameter gamma yang dioptimasi, yaitu parameter dari 

kernel RBF yang mengatur sensitivitas kemiripan data. Penelitian ini menggunakan 

𝑔𝑎𝑚𝑚𝑎 = 10−3, 10−2, … , 10. 
Proses optimasi hyperparameter pada penelitian ini dilakukan menggunakan bahasa 

pemrograman Python dengan bantuan library Optuna. Prosedur optimasi hyperparameter 

Bayesian diberikan oleh pseudo-code pada Gambar 3. 

 

 
Gambar 3. Pseudo-code Optimasi Hyperparameter 

 

Pada Gambar 3, Optuna akan memulai dengan membangkitkan sejumlah trial 

(kombinasi hyperparameter acak), kemudian mengevaluasi hasilnya berdasarkan metrik 

performa (pada penelitian ini digunakan metrik purity score). Selanjutnya, Optuna 

menggunakan pendekatan Bayesian untuk memperkirakan kombinasi parameter berikutnya 

yang berpotensi menghasilkan performa yang lebih baik. Proses ini diulang hingga mencapai 

jumlah trial maksimum atau tidak ditemukan peningkatan performa yang signifikan. 

 

2.4 K-Means Clustering 

K-Means digunakan sebagai metode untuk mengklaster hasil Spectral Embedding. 

Algoritma K-Means selalu memerlukan penentuan jumlah klaster (𝑘) di awal. Jika nilai k 

diubah, maka hasil klasterisasi juga bisa berbeda-beda [24]. Berikut langkah-langkah 

algoritma klastering K-Means: 

• STEP 1: DEFINISIKAN BANYAKNYA KELAS KLASTER (𝑘). PENELITIAN INI MENGGUNAKAN 

𝑘 = 5 KARENA DATASET DIKETAHUI BERASAL DARI 5 KELAS [19]. 

• STEP 2: PILIH CENTROID AWAL SECARA RANDOM UNTUK SETIAP KLASTER. 

• STEP 3: HITUNG SUM OF SQUARE ERROR (SSE), YAITU KUADRAT DARI JARAK 

EUCLIDEAN, ANTARA SETIAP OBJEK DAN CENTROID: 

𝑆𝑆𝐸 = ∑ ∑ 𝑑𝑖𝑠𝑡2(𝑚𝑖, 𝑥)

𝑥∈𝐶𝑖

𝑘

𝑖=1

                                              (4) 

dengan 𝑥 adalah titik data dalam klaster 𝐶𝑖 dan 𝑚𝑖 adalah centroid pada klaster 𝐶. 

https://doi.org/10.35760/tr.2025.v30i3.16
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• Step 4: setiap objek di-assigned ke klaster terdekat. 

• Step 5: centroid baru dihitung kembali untuk setiap klaster. 

• Step 6: ulangi step 3 sampai 5 hingga posisi centroid tidak berubah [25]. 

 

2.5 Evaluasi Model 

Hasil klastering dievaluasi menggunakan metode Purity (kemurnian). Purity adalah 

ukuran sejauh mana sebuah klaster hanya berisi satu kelas. Untuk setiap klaster, hitung 

jumlah titik data dari kelas yang paling banyak muncul di klaster tersebut, kemudian 

jumlahkan untuk semua kelas dan bagi dengan total jumlah titik data. Rumus dari Purity 

sebagai berikut: 
1

𝑁
∑

𝑚𝑎𝑥
𝑑 ∈ 𝐷

𝑚∈𝑀

|𝑚 ∩ 𝑑|                                                    (5) 

dengan 𝑀 klaster, 𝑁 titik data, dan 𝐷 kelas [26]. Selanjutnya, hasil evaluasi dengan metode 

Purity disebut sebagai akurasi dalam penelitian ini. 

 

3. Hasil dan Pembahasan 

 

3.1 Optimasi Parameter 

Hasil optimasi Bayesian dalam penelitian ini terlihat pada Gambar 4. Sumbu mendatar 

menandakan jumlah percobaan optimasi (iterasi), yaitu 0 sampai 1.000 kali, sedangkan sumbu 

tegak menandakan nilai objektif yang ingin dimaksimalkan. Titik biru merepresentasikan nilai 

objektif pada setiap percobaan. Garis merah menandakan nilai objektif terbaik yang 

ditemukan hingga akhir percobaan. Terlihat bahwa nilai objektif semakin naik seiring 

bertambahnya percobaan optimasi. Pada iterasi awal (0 sampai 50), nilai objektif melonjak 

cepat dari sekitar 0,4 ke atas 0,9; artinya model menemukan kombinasi parameter yang bagus 

dengan cepat pada percobaan awal. Pada pertengahan iterasi (50 sampai 200), garis merah 

naik bertahap kemudian mulai stabil. Masih ada titik-titik yang nilai objektifnya lebih rendah, 

artinya terjadi proses eksplorasi yaitu mencoba mencari parameter lain untuk melihat apakah 

ada kombinasi yang lebih baik. Selanjutnya pada iterasi lanjut (200-1000), garis merah 

mendatar yang berarti tidak ada peningkatan signifikan dalam mencari nilai objektif terbaik. 

Banyak titik biru yang tersebar di bawah garis merah menandakan optimasi masih 

mengeksplorasi ruang parameter untuk memastikan tidak melewatkan potensi perbaikan. 

 

 
Gambar 4. Plot Hasil Optimasi Bayesian 
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Detail hasil optimasi setiap parameter dapat dilihat pada Gambar 5. Sumbu mendatar 

menandakan nilai masing-masing parameter, sedangkan sumbu tegak menandakan nilai 

objektif yang ingin dimaksimalkan. Berikut penjelasan untuk masing-masing parameter: 

• Pada parameter affinity, terdapat 2 parameter yang dipilih yaitu Nearest Neighbors dan 

RBF. Titik-titik untuk Nearest Neighbors umumnya menghasilkan nilai objektif lebih 

tinggi, terlihat dari banyak titik yang di atas 0,9; sedangkan titik-titik untuk RBF 

sebagian besar di bawah 0,5. Artinya untuk dataset ini, graf afinitas dengan Nearest 

Neighbors lebih konsisten menghasilkan kualitas klaster yang lebih baik dibandingkan 

RBF. 

• Pada parameter gamma di RBF, terlihat titik-titik di gamma bervariasi mulai dari 

0,001 sampai 10. Untuk sebagian besar nilai gamma, berapapun nilainya, nilai 

objektifnya relatif tetap rendah. Hal ini sesuai dengan hasil affinity bahwa secara 

umum variasi gamma tidak berpengaruh signifikan memperbaiki hasil. 

• Pada parameter n_components, titik dengan nilai objektif tinggi, mendekati 0,9; lebih 

banyak pada n_components = 4 sampai 6. Artinya, data diproyeksikan ke ruang 

dimensi 4 sampai 6 komponen cenderung memberikan representasi klaster terbaik. 

Lebih detailnya mengenai pemilihan 𝑛_components terlihat pada Gambar 6. Sumbu 

mendatar menandakan jumlah dimensi output (jumlah kolom Spectral Embedding), 

sedangkan sumbu tegak menandakan n_neighbors yaitu jumlah tetangga terdekat. 

Hasil menunjukkan area biru tua, yaitu akurasi di atas 0,9; terkonsentrasi pada 

n_components sekitar 4 sampai 6 dan n_neighbors sekitar 5 sampai 8 yang berarti 

kombinasi proyeksi ke dimensi 4-6 dengan 5-8 tetangga terdekat memberikan kualitas 

klaster terbaik.  

• Pada parameter n_neighbors, sebagian besar nilai objektif tinggi, yang lebih dari 0,9; 

terkonsentrasi di n_neighbors = 5 sampai 8. Artinya, matriks afinitas dengan 

membentuk 5 sampai 8 tetangga terdekat cenderung optimal.  

Berdasarkan optimasi Bayesian dengan Optuna diperoleh hasil optimasi terbaik dari 1.000 

percobaan, yaitu n_components = 5 dan affinity = Nearest Neighbors dengan n_neighbors = 6. 

Selanjutnya, hasil optimasi digunakan untuk membentuk matriks Spectral Embedding. 

 

 
 

Gambar 5. Plot Hasil Optimasi setiap Parameter 
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Gambar 6. Kontur Pemilihan n_components dan n_neighbors 

 

3.2 Klastering 

Untuk mempermudah dalam melihat performa Spectral Clustering, maka penelitian ini 

menampilkan visualisasi dalam n_components = 3 (3D). Penelitian ini melakukan visualisasi 

3D dataset menggunakan metode Spectral Embedding dengan n_neighbors = 4 yang dapat 

dilihat pada Gambar 7. Gambar 7 menunjukkan bahwa klaster terpisah secara spasial. 

Bone_Marrow (merah) tampak membentuk klaster yang kompak, Bone_Marrow_CD34 (biru) 

juga membentuk klaster yang relatif terpisah, sedangkan klaster AML (hijau) mulai terlihat 

terbagi menjadi subklaster yang lebih terdefinisi. Berdasarkan visualisasi, metode Spectral 

Embedding cukup baik dalam mengidentifikasi struktur klaster, dimana memberikan klaster 

antar tipe terpisah dan kompak untuk selanjutnya dianalisis menggunakan K-Means.  
 

 

 
Gambar 7. Visualisasi Dataset Spectral Embedding 

 

Hasil klastering kemudian dievaluasi akurasinya berdasarkan skor Silhouette, indeks 

Davies-Bouldin, dan indeks Calinski Harabasz. Gambar 8 menunjukkan nilai akurasi untuk 

Spectral Embedding 3 komponen. Pada Gambar 8, skor Silhoutte meningkat tajam di 𝑘 = 5 

mencapai sekitar 0,8 dan stabil tinggi hingga 𝑘 = 10. Ini mengindikasikan struktur klaster 

yang jelas dan well-separated sejak 𝑘 = 5. Kemudian indeks Davies-Bouldin menurun 

signifikan setelah 𝑘 = 5,  dimana semakin kecil indeks maka semakin bagus, dan terus 
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membaik mencapai nilai terndah di sekitar 𝑘 = 9 − 10. Selanjutnya, indeks Calinski 

Harabasz naik drastis dari 𝑘 = 5 ke atas, dimana semakin besar nilainya maka semakin jelas 

pemisahan antar klaster, hingga mencapai puncak sekitar 𝑘 = 10. Berdasarkan ketiga nilai 

akurasi, Spectral Embedding memberi struktur klaster yang kuat dan K-Means menunjukkan 

performa sangat baik mulai 𝑘 = 5 ke atas. 

 

 
Gambar 8. Evaluasi Spectral Embedding 3 Komponen menggunakan K-Means 

 

Mengacu pada hasil optimasi Bayesian, matriks hasil Spectral Embedding terdiri dari 5 

kolom dan 64 baris. Sebagian matriks hasil Spectral Embedding ditunjukkan pada Gambar 9.  

Kolom matriks hasil Spectral Embedding ini berupa eigenvektor-eigenvektor. Matriks inilah 

yang kemudian diklaster berdasarkan barisnya menggunakan algoritma K-Means. 

Hasil algoritma klastering K-Means dapat dilihat pada Gambar 10. Hasil menunjukkan 

ada 21 sampel anggota klaster ke-0 yang merupakan sampel kelas AML, ada 15 sampel 

anggota klaster ke-1 yang 10 diantaranya merupakan sampel kelas PBSC_CD34 dan 5 

diantaranya salah pengelompokan, ada 8 sampel anggota klaster ke-2 yang merupakan sampel 

kelas Bone_Marrow_CD34, ada 10 sampel anggota klaster ke-3 yang merupakan sampel 

kelas PB, dan ada 10 sampel anggota klaster ke-4 yang merupakan sampel kelas Bone-

Marrow. 

 

 
Gambar 9. Matriks Hasil Spectral Embedding 
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Gambar 10. Pemetaan Hasil Klastering setiap Kelas 

 

Perbandingan heatmap 10.000 gen dataset sebelum dan sesudah Spectral Clustering – 

K-Means (SC-KM) dapat dilihat pada Gambar 11. Heatmap sebelah kiri menampilkan data 

ekspresi gen awal yang masih acak sehingga pola kemiripan atau pola ekspresi gen sejenis 

belum tampak jelas. Warna hijau-kuning-merah masih tersebar merata menandakan variasi 

data namun belum terkelompok. Heatmap sebelah kanan menampilkan data yang sama 

namun sampel sudah dikelompokkan atau diurutkan berdasarkan hasil klastering sehingga 

sampel yang mirip berdekatan. Setiap blok vertikal terpisah oleh batas yang menunjukkan 

hasil pembagian sampel ke klaster. Dalam setiap blok, pola warna cenderung lebih seragam 

atau konsisten yang menandakan ekspresi gen dalam satu klaster memiliki kemiripan pola. 

 

 
Gambar 11. Perbandingan Heatmap Gen 

 

Perbandingan hasil klastering menggunakan metode Hierarchical Clustering (HC), K-

Means, dan SC-KM dapat dilihat pada Tabel 1. 
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Tabel 1. Perbandingan Hasil Klastering 

 

 

Hasil pada Tabel 1 menunjukkan bahwa metode SC-KM memberikan akurasi lebih tinggi 

dibandingkan kedua metode unsupervised lainnya. Hal ini berarti metode SC-KM lebih baik 

dalam melakukan pengelompokan. Hasil ini menunjukkan bahwa representasi spectral 

embedding pada SC-KM mampu memetakan pola hubungan antar sampel secara lebih efektif 

dibandingkan pendekatan konvensional. Ketika digabungkan dengan optimasi 

hyperparameter berbasis Bayesian, metode ini menghasilkan pemisahan klaster yang lebih 

akurat dan stabil pada data ekspresi gen leukemia.  

  

4. Kesimpulan 

Penelitian ini menunjukkan bahwa kombinasi optimasi Bayesian dengan Optuna dapat 

digunakan secara efektif untuk melakukan hyperparameter tuning pada metode Spectral 

Clustering – K-Means (SC-KM) untuk dataset ekspresi gen Leukemia (CuMiDa). 

Berdasarkan hasil optimasi 1.000 iterasi, diperoleh kombinasi parameter terbaik yaitu 

n_components = 5, affinity = Nearest Neighbors, dan n_neighbors = 6, yang mampu 

memproyeksikan data ke ruang embedding yang tepat dan membentuk matriks similaritas 

yang sesuai. 

Berdasarkan evaluasi menggunakan tiga metrik klastering, yaitu skor Silhouette, indeks 

Davies-Bouldin, dan indeks Calinski Harabasz, diperoleh hasil yang konsisten bahwa reduksi 

dimensi menggunakan Spectral Embedding (3 eigen vektor) memberikan hasil yang optimal 

untuk K-Means. Hasil klastering juga menunjukkan bahwa metode SC-KM menggunakan 

optimasi Bayesian mampu memisahkan sampel ke dalam klaster dengan akurasi 92,19%, 

lebih tinggi dibandingkan Hierarchical Clustering (40,63%) maupun K-Means (67,19%). Hal 

ini menunjukkan bahwa pendekatan Spectral Clustering yang digabung dengan K-Means dan 

optimasi hyperparameter dengan Bayesian terbukti lebih efektif untuk mendeteksi pola 

subtipe leukemia pada data berdimensi tinggi. Visualisasi heatmap juga memperlihatkan pola 

ekspresi gen yang awalnya acak menjadi lebih terkelompok dan seragam di dalam masing-

masing klaster. Secara keseluruhan, penelitian ini menunjukkan bahwa kombinasi Spectral 

Clustering-K-Means dan optimasi Bayesian menggunakan Optuna dapat meningkatkan 

kualitas klastering pada data ekspresi gen yang kompleks serta membuka peluang penerapan 

pendekatan ini atau menggunakan metode lain untuk mengklaster hasil Spectral Embedding 

seperti Fuzzy C-Means, Partition Around Medoids (PAM), atau pendekatan klastering 

alternatif lainnya pada masalah bioinformatika yang serupa.  
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