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Abstract

Leukemia is one of the cancers with the highest mortality rate worldwide; therefore, identifying its
subtypes is crucial to support accurate diagnosis and effective treatment. The analysis of high-
dimensional gene expression data, such as the CuMiDa dataset, still faces major challenges due to
overlapping patterns and limited sample sizes. This study proposes the application of Bayesian
Optimization using Optuna to perform hyperparameter tuning on the Spectral Clustering — K-Means
method to improve the clustering performance of leukemia subtypes. Four key parameters
(n_components, affinity method, n_neighbors, and gamma) were optimized through 1,000
iterations. The best configuration was obtained at n_components = 5 using the Nearest Neighbors
method with n_neighbors = 6. The resulting Spectral Embedding matrix was then grouped using K-
Means. The results showed that this approach achieved a clustering accuracy of 92,19%,
outperforming both K-Means and Hierarchical Clustering when applied separately. Heatmap
visualization demonstrated that the optimized method effectively grouped samples with similar gene
expression patterns. This study demonstrates that the combination of Spectral Clustering—K-Means
and Bayesian optimization using Optuna can improve the clustering quality of complex gene
expression data and open up broader opportunities for application in other bioinformatics studies.
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Abstrak

Leukemia merupakan salah satu kanker dengan tingkat kematian tertinggi di dunia sehingga
identifikasi subtipenya sangat penting untuk mendukung diagnosis dan pengobatan yang tepat.
Analisis data ekspresi gen berdimensi tinggi, seperti dataset CuMiDa, masih menghadapi tantangan
besar akibat pola yang saling tumpang tindih dan jumlah sampel yang terbatas. Penelitian ini
mengusulkan penerapan optimasi Bayesian menggunakan Optuna untuk melakukan penyesuaian
hyperparameter pada metode Spectral Clustering — K-Means guna meningkatkan performa
klastering subtipe leukemia. Empat parameter kunci (n_components, affinity method, n_neighbors,
dan gamma) dioptimasi melalui 1.000 iterasi. Konfigurasi terbaik diperoleh pada n _components = 5
dengan metode Nearest Neighbors dan n_neighbors = 6. Matriks Spectral Embedding yang
dihasilkan kemudian dikelompokkan menggunakan K-Means. Hasil penelitian menunjukkan bahwa
pendekatan ini mencapai akurasi klastering sebesar 92,19%, melampaui K-Means maupun
Hierarchical Clustering secara terpisah. Visualisasi heatmap membuktikan bahwa metode yang
dioptimasi ini mampu mengelompokkan sampel dengan pola ekspresi gen yang serupa secara
efektif. Penelitian ini menunjukkan bahwa kombinasi Spectral Clustering-K-Means dan optimasi
Bayesian menggunakan Optuna dapat meningkatkan kualitas klastering pada data ekspresi gen yang
kompleks, serta membuka peluang penerapan lebih luas dalam studi bioinformatika lainnya.
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1. Pendahuluan

Leukemia (kanker darah) merupakan salah satu penyakit dengan tingkat kematian
tertinggi di dunia. Leukemia adalah kanker darah yang menyerang sumsum tulang dan sel
darah, ditandai dengan proliferasi sel abnormal yang tidak terkendali. Identifikasi subtipe
leukemia sangat penting karena memengaruhi diagnosis, pengobatan, dan prognosis pasien
[1].

Seiring meningkatnya kompleksitas data biomedis, penerapan teknik machine learning
dalam analisis data kanker semakin berkembang. Integrasi teknologi Artificial Intelligence
(AI) melalui metode machine learning dapat mendukung deteksi kanker secara dini dengan
akurasi yang lebih tinggi, terutama pada dataset medis yang berukuran terbatas [2].
Perkembangan teknologi microarray memungkinkan peneliti menganalisis ekspresi ribuan
gen secara bersamaan sehingga membuka peluang untuk mendeteksi pola molekuler pada
berbagai jenis leukemia. Namun, data ekspresi gen memiliki tantangan khusus, yaitu dimensi
yang tinggi, jumlah sampel terbatas, noise yang signifikan, serta pola subtipe yang tumpang
tindih [3], [4].

Salah satu basis data yang mendukung pengembangan metode analisis ekspresi gen
adalah Curated Microarray Database (CuMiDa). Dataset ini memuat data ekspresi gen
kanker, termasuk leukemia, yang telah melalui tahap background correction, normalisasi, dan
anotasi, sechingga banyak digunakan sebagai benchmark penelitian bioinformatika, baik untuk
metode supervised maupun unsupervised learning [1], [3]. Dengan karakteristik data yang
kompleks dan berdimensi tinggi, CuMiDa menyediakan landasan ideal bagi penerapan teknik
klastering untuk mengungkap pola molekuler yang tersembunyi.

Klastering merupakan pendekatan wunsupervised yang dapat digunakan untuk
menganalisis dataset besar dengan banyak karakteristik dan membagi dataset besar tersebut
ke dalam kelompok-kelompok kecil atau klaster [5]. Klastering menjadi salah satu pendekatan
penting dalam bioinformatika untuk mengungkap pola-pola tersembunyi pada data ekspresi
gen yang kompleks dan berdimensi tinggi. Klastering dikategorikan baik apabila setiap data
tergabung ke dalam kelompok yang homogen tanpa adanya percampuran antar kelompok [6].

Dalam ranah klastering, Spectral Clustering dikenal sebagai pendekatan efektif untuk
mendeteksi pola klaster non-linear. Spectral Clustering juga memiliki keunggulan utama
menangani data berdimensi tinggi dengan pola non-konveks yang sulit dipecahkan oleh
metode klasterisasi tradisional dengan memanfaatkan Graph Structure Learning (GSL) untuk
membangun graf kemiripan yang optimal sehingga dapat meningkatkan kualitas Spectral
Embedding dan hasil klasterisasi secara keseluruhan [7]. Sementara itu, pengembangan
algoritma Improved Automated Spectral Clustering (IASC) berhasil mengatasi keterbatas
Spectral Clustering konvensional dengan secara otomatis menentukan jumlah klaster melalui
evaluasi kepadatan dan klasifikasi berbasis sudut kosinus, yang meningkatkan akurasi
terutama pada data non-konveks [8]. Selain itu, konektivitas graf yang tinggi dengan
pendekatan multi-view Spectral Clustering berbasis jalur (path-based similarity) terbukti
tangguh terhadap noise dan outlier dalam aplikasi dunia nyata [9]. Namun, Spectral
Clustering umumnya memerlukan algoritma lain sebagai tahap post-processing untuk
mengelompokkan hasil embedding ke klaster akhir dan di bagian inilah K-Means sering
digunakan karena kemampuannya menangkap struktur klaster sederhana pada ruang
embedding yang telah direduksi [10]. K-Means mengungkapkan pola alami pada data tanpa
perlu label atau kategori buatan manusia [11]. Tren terbaru dalam taksonomi algoritma
klastering menunjukkan bahwa pendekatan graph-based seperti Spectral Clustering semakin
diminati untuk menangani data berdimensi tinggi dan kompleks, terutama pada data
kategorikal maupun numerik [12].
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Performa Spectral Clustering—K-Means sangat bergantung pada pemilihan
hyperparameter seperti jumlah klaster (k), skema normalisasi Laplacian, dan parameter kernel
matriks similaritas. Pemilihan hyperparameter yang tidak optimal dapat menghasilkan klaster
dengan kualitas rendah atau tidak stabil. Metode funing tradisional seperti grid search atau
random search seringkali memakan sumber daya komputasi besar dan tidak efisien untuk
ruang parameter yang kompleks [4]. Hal ini diatasi denganadopsi optimasi Bayesian yang
mampu membangun model probabilistik dari hasil evaluasi sebelumnya dan memilih
kombinasi hyperparameter berikutnya yang memberikan hasil lebih baik. Secara umum,
optimasi Bayesian sangat berguna untuk menyelesaikan masalah optimasi yang mahal, seperti
hyperparameter tuning, desain eksperimen, sampai pemodelan sistem kompleks tanpa harus
mencoba semua kemungkinan secara manual [13], [14].

Optuna adalah alat berbasis Python yang digunakan untuk mencari kombinasi parameter
terbaik pada model machine learning secara otomatis dan efisien. Optuna, sebagai salah satu
implementasi optimasi Bayesian, terbukti memiliki trade-off runtime dan skor performa yang
baik pada kasus Combined Algorithm Selection and Hyperparameter optimization (CASH),
mengungguli HyperOpt, SMAC, dan Optunity di sebagian besar dataset riil. Fitur-fitur ini
menjadikan Optuna efektif dan efisien untuk hyperparameter tuning secara otomatis pada
berbagai model pembelajaran mesin [15]. Framework Optuna, dengan fitur define-by-run
API, pruning otomatis, dan kemampuan parallelization, menjadi salah satu open-source
library terkini yang mendukung pendekatan ini secara praktis, fleksibel, dan efisien [16].

Hingga saat ini penelitian pada data leukemia CuMiDa telah dilakukanmisalnya
menggunakan pendekatan Linear Programming (LP) dan teknik feature selection [17].
Penelitian lain juga menggunakan metode super-learner yang menggabungkan beberapa model
dasar dan memakai Random Forest sebagai learner akhir [18]. Namun, penelitian yang ada
belum memanfaatkan optimasi Bayesian dengan Optuna untuk hyperparameter tuning
kombinasi Spectral Clustering—K-Means pada data ekspresi gen leukemia dari CuMiDa. Oleh
karena itu, penelitian ini bertujuan untuk menguji dan menganalisis lebih mendalam terhadap
efektivitas kombinasi metode Spectral Clustering—K-Means yang dioptimasi menggunakan
Bayesian melalui Optuna, untuk mengetahui sejauh mana pendekatan tersebut mampu
meningkatkan pemisahan dan kualitas klaster pada data ekspresi gen leukemia dari CuMiDa.

2. Metode Penelitian

Dataset CuMiDa telah melalui tahap prapemrosesan data [3]. Selanjutnya data
memasuki tahap algoritma Spectral Clustering yang intinya mereduksi dimensi dataset awal,
disebut Spectral Embedding. Dalam pembentukan Spectral Embedding, penelitian ini
menggunakan Bayesian untuk mengoptimalkan parameter-parameter dalam Spectral
Clustering. Matriks hasil Spectral Embedding inilah yang kemudian diklaster menggunakan
algoritma klastering K-Means.

2.1 Pengumpulan Data

CuMiDa diperoleh dari Structural Bioinformatics and Computational Biology Lab
(SBCB) yang terdiri atas 64 sampel data dan 22.285 ekspresi gen leukemia GSE9476. Data
tersebut dapat diakses di https://sbeb.inf.ufrgs.br/cumida#datasets[19]. Sebagian dataset yang
digunakan dalam penelitian ini ditunjukkan pada Gambar 1. Dataset telah diketahui terklaster
menjadi 5 tipe kelas, yaitu AML, PB, Bone-Marrow, PBSC _CD34, dan Bone Marrow_CD34.
Distribusi sampel data berdasarkan kelasnya dapat dilihat pada Gambar 2. Telah dilakukan
penelitian pada data tersebut menggunakan algoritma klastering unsupervised learning: K-
Means dan Hierarchical Clustering (HC) [3] sehingga akan dibandingkan hasil klasteringnya
menggunakan metode Spectral Clustering—K-Means yang dioptimasi menggunakan Bayesian
melalui Optuna.
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samples type 16@7_s_at 1053_at 117_at  121_at 1255_g_at 1294 at 1316_at 1320 _at ...
0 1 Bone_Marrow_CD34  7.745245 7.811210 6477916 8841506 4546941 7.957714 5344999 4673364
1 12 Bone_Marrow CD34 8.087252 7.240673 8.584648 8.983571 4548934 8.011652 5.579647 4.828184
2 13 Bone_Marrow _CD34 7.792056 7.549368 11.053504 8.909703 4549328 8.237099 5406489 4615572
3 14 Bone_Marrow_CD34 7.767265 7.094460 11.816433 8.994654 4697018 8.283412 5.582195 4.903684
4 15 Bone Marrow CD34 8.010117 7.405281 6.656049 9.050682 4514986 8.377046 5.493713 4.860754

5 rows x 22285 columns
Gambar 1. Dataset dari Ekspresi Microarray Leukemia

Distribution of Sample Types

PBSC_CD34

Bone_Marrow_CD34

Bone_Marrow

Gambar 2. Distribusi Sampel Gen berdasarkan Tipe Kelas

2.2 Spectral Clustering

Pada sebuah himpunan data yang terdiri dari n-titik, algoritma Spectral Clustering akan
membentuk n X n matriks similaritas dan menghitung eigenvektor dari matriks tersebut.
Misalkan diberikan sebuah himpunan n titik data x4, x5, ...., x,, dengan setiap x; € Ry, graf
similaritas G = (V,E) didefinisikan sebagai sebuah graf tak berarah dimana simpul ke-i
berkorespondesi dengan titik data x;. Untuk setiap busur (i,j) € E, diberikan sebuah bobot
w;j = 0, yang mengartikan kemiripan/similaritas dari titik-titik data x; dan x;. Matriks

n
w = (Wij)i,j=1 (1)
disebut matriks similaritas (similarity graph). Spectral Clustering mempartisi data menjadi k
kelas yang saling asing (disjoint) sehingga setiap x; menjadi anggota di tepat salah satu kelas
[20].

Penelitian ini menggunakan konstruksi graf terhubung penuh (fully connected graph).
Semua titik akan dihubungkan dengan nilai kemiripan positif antar satu dengan lainnya, dan
semua busur diberi bobot s;;. Fungsi similaritas yang digunakan adalah fungsi similaritas

Gauss, s(xl-, xj),
W = s(x;,x;) = exp (2)

dengan parameter 0 menentukan “lebar” dari neighbourhood-nya [21].
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Laplacian ternormalisasi digunakan dalam penelitian ini untuk meminimumkan
similaritas data antar kelompok dan memaksimumkan similaritas antar data dalam satu

kelompok. Laplacian ternormalisasi didefinisikan sebagai
1 1 1

1

Lyym =D 2LD 2=1-D2WD 2 3)
D merupakan matriks diagonal dimana d; menandakan jumlah bobot semua busur yang
bertetangga dengan simpul ke-i dan L = D — W [21].

Eigenvalue dari matriks Laplacian dihitung. Spectral Clustering menggunakan
multiplisitas n eigenvalue 0 atau mendekati 0 dari Graph Laplacian untuk mendapatkan
informasi jumlah grup yang dapat dibentuk dari himpunan verfex. Matriks yang berisi
eigenvector dari n eigenvalue tersebut menjadi representasi data yang selanjutnya akan
diklastering.

2.3 Hyperparameter Tuning via Optimasi Bayesian

Optimasi Bayesian membangun model probabilistik untuk mempelajari pola dari hasil
evaluasi sebelumnya. Kerangka kerja optimasi Bayesian memiliki dua komponen utama.
Pertama, model perkiraan probabilistik yang terdiri dari distribusi awal (prior) yang
menangkap perilaku fungsi tujuan yang tidak diketahui dan model observasi yang
menjelaskan bagaimana data dihasilkan. Kedua, fungsi kerugian (loss function) yang
menggambarkan seberapa optimal urutan percobaan yang dilakukan. Kerugian yang
diharapkan akan diminimalkan untuk memilih urutan percobaan yang optimal [14]. Optimasi
Bayesian memakai model perkiraan yang disebut Gaussian Process untuk memprediksi nilai
rata-rata (mean) dan seberapa yakin (variansi) prediksi tersebut. Setelah fungsi dievaluasi di
beberapa titik awal, model ini diperbaharui menggunakan aturan Bayes agar prediksi
berikutnya makin akurat. Optimasi Bayesian memakai acquisition function, seperti Expected
Improvement atau Upper Confidence Bound untuk memutuskan di mana harus mencoba lagi
[22].

Optuna adalah sebuah framework modern untuk optimasi hyperparameter secara
otomatis yang memanfaatkan pendekatan Bayesian. Optuna membantu menemukan
kombinasi parameter terbaik menggunakan metode define-by-run, artinya membuat ruang
pencarian parameter secara dinamis saat program berjalan tanpa perlu mendefinisikan
semuanya di awal. Optuna juga memiliki fitur pruning otomatis yaitu memotong percobaan
yang tidak menjanjikan sejak awal sehingga menghemat waktu dan sumber daya [16].

Dalam tahap ini terdapat empat parameter yang akan dioptimasi menggunakan metode
Bayesian, yaitu:

a. n_components: menunjukkan jumlah dimensi output (embedding) yang
merepresentasikan multiplisitas n eigenvalue 0 atau mendekati 0. Artinya, data yang
berdimensi k (banyaknya kolom data) diproyeksikan ke ruang dimensi n komponen,
dengan n < k. Penelitian ini menggunakan n_components = 2,3, ...,10.

b. Affinity: menunjukkan metode yang digunakan untuk membuat graf afinitas
(similiarity graph). Ada dua metode yang akan dipilih, yaitu Radial Basis Function
(RBF) dan Nearest Neighbors. Nearest Neighbors adalah metode menghubungkan
simpul v; dengan simpul v; jika v; termasuk dalam n tetangga terdekat dari v;,
kemudian busur-busur yang menghubungkan simpul-simpul bertetangga tersebut
diberikan bobot berdasarkan similaritasnya [21]. Metode ini menghubungkan setiap
titik data ke n tetangga terdekatnya berdasarkan jarak Euclidean [7].

o Jika affinity = Nearest Neighbors maka parameter n_neighbours yang dioptimasi,
yaitu jumlah tetangga terdekat yang digunakan untuk membentuk matriks afinitas
metode KNN. Penelitian ini menggunakan n_neighbors = 2,3, ...,10.
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RBF adalah metode yang memetakan data dari ruang berdimensi rendah ke ruang
berdimensi lebih tinggi secara nonlinier, sehingga pola data yang awalnya sulit
dipisahkan menjadi lebih mudah dipisahkan dengan garis lurus di ruang tersebut [23].
o Jika affinity = RBF maka parameter gamma yang dioptimasi, yaitu parameter dari
kernel RBF yang mengatur sensitivitas kemiripan data. Penelitian ini menggunakan
gamma = 1073,1072, ..., 10.
Proses optimasi hyperparameter pada penelitian ini dilakukan menggunakan bahasa
pemrograman Python dengan bantuan /ibrary Optuna. Prosedur optimasi hyperparameter
Bayesian diberikan oleh pseudo-code pada Gambar 3.

Algoritma: Optimasi Hyperparameter Berbasis Bayesian (Optuna)

Masukan:

- Dataset X

- Label sebenarnya y

= Fungsi objektif ()
Keluaran:

- Hyperparameter terbaik 8

Langkah-langkah:

1. Inisialisasi studi dengan arah optimasi (misalnya: memaksimalkan skor purity)
2. Untuk setiap percobaan (trial) t dari 1 hingga N_trials lakukan:
a. Bangkitkan kombinasi hyperparameter 8_t dari ruang pencarian
b. Latih model klastering menggunakan parameter 8_t
C. Hitung metrik performa f(8_t) (misalnya purity score)
d. Simpan hasil percobaan ke dalam studi
3. Setelah seluruh percobaan selesai, pilih parameter terbaik 8%
yang menghasilkan nilai f(8_t) tertinggi
4. Kembalikan 8+ sebagai hyperparameter optimal

Gambar 3. Pseudo-code Optimasi Hyperparameter

Pada Gambar 3, Optuna akan memulai dengan membangkitkan sejumlah #rial
(kombinasi hyperparameter acak), kemudian mengevaluasi hasilnya berdasarkan metrik
performa (pada penelitian ini digunakan metrik purity score). Selanjutnya, Optuna
menggunakan pendekatan Bayesian untuk memperkirakan kombinasi parameter berikutnya
yang berpotensi menghasilkan performa yang lebih baik. Proses ini diulang hingga mencapai
jumlah #rial maksimum atau tidak ditemukan peningkatan performa yang signifikan.

2.4 K-Means Clustering

K-Means digunakan sebagai metode untuk mengklaster hasil Spectral Embedding.
Algoritma K-Means selalu memerlukan penentuan jumlah klaster (k) di awal. Jika nilai &
diubah, maka hasil klasterisasi juga bisa berbeda-beda [24]. Berikut langkah-langkah
algoritma klastering K-Means:

e STEP 1: DEFINISIKAN BANYAKNYA KELAS KLASTER (k). PENELITIAN INI MENGGUNAKAN
k = 5 KARENA DATASET DIKETAHUI BERASAL DARI 5 KELAS [19].

e STEP 2: PILIH CENTROID AWAL SECARA RANDOM UNTUK SETIAP KLASTER.

e STEP 3: HITUNG SUM OF SQUARE ERROR (SSE), YAITU KUADRAT DARI JARAK
EUCLIDEAN, ANTARA SETIAP OBJEK DAN CENTROID:

SSE = zk: Z dist?(m;, x) (4)

i=1 x€C;
dengan x adalah titik data dalam klaster C; dan m; adalah centroid pada klaster C.
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e Step 4: setiap objek di-assigned ke klaster terdekat.
e Step 5: centroid baru dihitung kembali untuk setiap klaster.
e Step 6: ulangi step 3 sampai 5 hingga posisi centroid tidak berubah [25].

2.5 Evaluasi Model

Hasil klastering dievaluasi menggunakan metode Purity (kemurnian). Purity adalah
ukuran sejauh mana sebuah klaster hanya berisi satu kelas. Untuk setiap klaster, hitung
jumlah titik data dari kelas yang paling banyak muncul di klaster tersebut, kemudian
jumlahkan untuk semua kelas dan bagi dengan total jumlah titik data. Rumus dari Purity

sebagai berikut:
1 max
deeDlmndl (5)

meM
dengan M Kklaster, N titik data, dan D kelas [26]. Selanjutnya, hasil evaluasi dengan metode

Purity disebut sebagai akurasi dalam penelitian ini.
3. Hasil dan Pembahasan

3.1 Optimasi Parameter

Hasil optimasi Bayesian dalam penelitian ini terlihat pada Gambar 4. Sumbu mendatar
menandakan jumlah percobaan optimasi (iterasi), yaitu 0 sampai 1.000 kali, sedangkan sumbu
tegak menandakan nilai objektif yang ingin dimaksimalkan. Titik biru merepresentasikan nilai
objektif pada setiap percobaan. Garis merah menandakan nilai objektif terbaik yang
ditemukan hingga akhir percobaan. Terlihat bahwa nilai objektif semakin naik seiring
bertambahnya percobaan optimasi. Pada iterasi awal (0 sampai 50), nilai objektif melonjak
cepat dari sekitar 0,4 ke atas 0,9; artinya model menemukan kombinasi parameter yang bagus
dengan cepat pada percobaan awal. Pada pertengahan iterasi (50 sampai 200), garis merah
naik bertahap kemudian mulai stabil. Masih ada titik-titik yang nilai objektifnya lebih rendah,
artinya terjadi proses eksplorasi yaitu mencoba mencari parameter lain untuk melihat apakah
ada kombinasi yang lebih baik. Selanjutnya pada iterasi lanjut (200-1000), garis merah
mendatar yang berarti tidak ada peningkatan signifikan dalam mencari nilai objektif terbaik.
Banyak titik biru yang tersebar di bawah garis merah menandakan optimasi masih
mengeksplorasi ruang parameter untuk memastikan tidak melewatkan potensi perbaikan.
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Gambar 4. Plot Hasil Optimasi Bayesian
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Detail hasil optimasi setiap parameter dapat dilihat pada Gambar 5. Sumbu mendatar

menandakan nilai masing-masing parameter, sedangkan sumbu tegak menandakan nilai
objektif yang ingin dimaksimalkan. Berikut penjelasan untuk masing-masing parameter:
e Pada parameter affinity, terdapat 2 parameter yang dipilih yaitu Nearest Neighbors dan

RBF. Titik-titik untuk Nearest Neighbors umumnya menghasilkan nilai objektif lebih
tinggi, terlihat dari banyak titik yang di atas 0,9; sedangkan titik-titik untuk RBF
sebagian besar di bawah 0,5. Artinya untuk dataset ini, graf afinitas dengan Nearest
Neighbors lebih konsisten menghasilkan kualitas klaster yang lebih baik dibandingkan
RBF.

Pada parameter gamma di RBF, terlihat titik-titik di gamma bervariasi mulai dari
0,001 sampai 10. Untuk sebagian besar nilai gamma, berapapun nilainya, nilai
objektifnya relatif tetap rendah. Hal ini sesuai dengan hasil affinity bahwa secara
umum variasi gamma tidak berpengaruh signifikan memperbaiki hasil.

Pada parameter n_components, titik dengan nilai objektif tinggi, mendekati 0,9; lebih
banyak pada n_components = 4 sampai 6. Artinya, data diproyeksikan ke ruang
dimensi 4 sampai 6 komponen cenderung memberikan representasi klaster terbaik.
Lebih detailnya mengenai pemilihan n_components terlihat pada Gambar 6. Sumbu
mendatar menandakan jumlah dimensi output (jumlah kolom Spectral Embedding),
sedangkan sumbu tegak menandakan n neighbors yaitu jumlah tetangga terdekat.
Hasil menunjukkan area biru tua, yaitu akurasi di atas 0,9; terkonsentrasi pada
n_components sekitar 4 sampai 6 dan n_neighbors sekitar 5 sampai 8 yang berarti
kombinasi proyeksi ke dimensi 4-6 dengan 5-8 tetangga terdekat memberikan kualitas
klaster terbaik.

Pada parameter n_neighbors, sebagian besar nilai objektif tinggi, yang lebih dari 0,9;
terkonsentrasi di n_neighbors = 5 sampai 8. Artinya, matriks afinitas dengan
membentuk 5 sampai 8 tetangga terdekat cenderung optimal.

Berdasarkan optimasi Bayesian dengan Optuna diperoleh hasil optimasi terbaik dari 1.000
percobaan, yaitu n_components =5 dan affinity = Nearest Neighbors dengan n_neighbors = 6.
Selanjutnya, hasil optimasi digunakan untuk membentuk matriks Spectral Embedding.
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Gambar 5. Plot Hasil Optimasi setiap Parameter
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Gambar 6. Kontur Pemilihan n_components dan n_neighbors

3.2 Klastering

Untuk mempermudah dalam melihat performa Spectral Clustering, maka penelitian ini
menampilkan visualisasi dalam n_components = 3 (3D). Penelitian ini melakukan visualisasi
3D dataset menggunakan metode Spectral Embedding dengan n_neighbors = 4 yang dapat
dilihat pada Gambar 7. Gambar 7 menunjukkan bahwa klaster terpisah secara spasial.
Bone Marrow (merah) tampak membentuk klaster yang kompak, Bone Marrow CD34 (biru)
juga membentuk klaster yang relatif terpisah, sedangkan klaster AML (hijau) mulai terlihat
terbagi menjadi subklaster yang lebih terdefinisi. Berdasarkan visualisasi, metode Spectral
Embedding cukup baik dalam mengidentifikasi struktur klaster, dimana memberikan klaster
antar tipe terpisah dan kompak untuk selanjutnya dianalisis menggunakan K-Means.

3D Spectral Embedding of Gene Expression Data
n_components : 3

affinity : nearest_neighbors
n_neighbors : 4 \ type
® ® Bone_Marrow_CD34
® Bone_Marrow
o AML
.‘ e PB
PBSC_CD34
v °
0.05 ©
[=]
5
x1 0.1 o

0.15 =
b
S & & \
1 & A x3

x2
Gambar 7. Visualisasi Dataset Spectral Embedding

Hasil klastering kemudian dievaluasi akurasinya berdasarkan skor Silhouette, indeks
Davies-Bouldin, dan indeks Calinski Harabasz. Gambar 8§ menunjukkan nilai akurasi untuk
Spectral Embedding 3 komponen. Pada Gambar 8, skor Silhoutte meningkat tajam di k = 5
mencapai sekitar 0,8 dan stabil tinggi hingga k = 10. Ini mengindikasikan struktur klaster
yang jelas dan well-separated sejak k = 5. Kemudian indeks Davies-Bouldin menurun
signifikan setelah k =5, dimana semakin kecil indeks maka semakin bagus, dan terus
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membaik mencapai nilai terndah di sekitar k =9 — 10. Selanjutnya, indeks Calinski
Harabasz naik drastis dari k = 5 ke atas, dimana semakin besar nilainya maka semakin jelas
pemisahan antar klaster, hingga mencapai puncak sekitar k = 10. Berdasarkan ketiga nilai
akurasi, Spectral Embedding memberi struktur klaster yang kuat dan K-Means menunjukkan
performa sangat baik mulai k = 5 ke atas.

Clustering Evaluation Metrics vs Number of Clusters SC (3-Components) + K-Means

Silhouette Score Davies-Bouldin Index Calinski-Harabasz Index
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Gambar 8. Evaluasi Spectral Embedding 3 Komponen menggunakan K-Means

Mengacu pada hasil optimasi Bayesian, matriks hasil Spectral Embedding terdiri dari 5
kolom dan 64 baris. Sebagian matriks hasil Spectral Embedding ditunjukkan pada Gambar 9.
Kolom matriks hasil Spectral Embedding ini berupa eigenvektor-eigenvektor. Matriks inilah
yang kemudian diklaster berdasarkan barisnya menggunakan algoritma K-Means.

Hasil algoritma klastering K-Means dapat dilihat pada Gambar 10. Hasil menunjukkan
ada 21 sampel anggota klaster ke-0 yang merupakan sampel kelas AML, ada 15 sampel
anggota klaster ke-1 yang 10 diantaranya merupakan sampel kelas PBSC CD34 dan 5
diantaranya salah pengelompokan, ada 8 sampel anggota klaster ke-2 yang merupakan sampel
kelas Bone Marrow CD34, ada 10 sampel anggota klaster ke-3 yang merupakan sampel
kelas PB, dan ada 10 sampel anggota klaster ke-4 yang merupakan sampel kelas Bone-
Marrow.

X1 X2 X3 x4 X5
0 -0.053277 -0.002093 0.111102 -0.038496 0.011491
1 -0.063277 -0.003184 0.132273 -0.064502 0.022104
2 -0.053277 -0.003840 0.136104 -0.069929 0.021193
3 -0.053277 -0.003583 0.134974 -0.067981 0.021814

4 -0.053277 -0.005368 0.120019 -0.047715 -0.000713

59 -0.053277 -0.074506 -0.053735 -0.043597 0.040244
60 -0.053277 -0.075205 -0.054596 -0.045656 0.041789
61 -0.053277 -0.067145 -0.044776 -0.024431 0.012094
62 -0.053277 -0.071923 -0.050251 -0.035779 0.025360
63 -0.053277 -0.070100 -0.048008 -0.031473 0.018678

64 rows x 5 columns

Gambar 9. Matriks Hasil Spectral Embedding
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Gambar 10. Pemetaan Hasil Klastering setiap Kelas

Perbandingan heatmap 10.000 gen dataset sebelum dan sesudah Spectral Clustering —
K-Means (SC-KM) dapat dilihat pada Gambar 11. Heatmap sebelah kiri menampilkan data
ekspresi gen awal yang masih acak sehingga pola kemiripan atau pola ekspresi gen sejenis
belum tampak jelas. Warna hijau-kuning-merah masih tersebar merata menandakan variasi
data namun belum terkelompok. Heatmap sebelah kanan menampilkan data yang sama
namun sampel sudah dikelompokkan atau diurutkan berdasarkan hasil klastering sehingga
sampel yang mirip berdekatan. Setiap blok vertikal terpisah oleh batas yang menunjukkan
hasil pembagian sampel ke klaster. Dalam setiap blok, pola warna cenderung lebih seragam
atau konsisten yang menandakan ekspresi gen dalam satu klaster memiliki kemiripan pola.

10

= — s

2 47 45 4952 % 16 8 10 12 14

Gambar 11. Perbandingan Heatmap Gen

Perbandingan hasil klastering menggunakan metode Hierarchical Clustering (HC), K-
Means, dan SC-KM dapat dilihat pada Tabel 1.
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Tabel 1. Perbandingan Hasil Klastering

Algoritma Has.il Klastering .
Pengelompokan tidak Benar Akurasi
HC 38 sampel 40,63% [26]
K-Means 21 sampel 67,19% [26]
SC-KM 5 sampel 92,19%

Hasil pada Tabel 1 menunjukkan bahwa metode SC-KM memberikan akurasi lebih tinggi
dibandingkan kedua metode unsupervised lainnya. Hal ini berarti metode SC-KM lebih baik
dalam melakukan pengelompokan. Hasil ini menunjukkan bahwa representasi spectral
embedding pada SC-KM mampu memetakan pola hubungan antar sampel secara lebih efektif
dibandingkan  pendekatan konvensional. Ketika digabungkan dengan optimasi
hyperparameter berbasis Bayesian, metode ini menghasilkan pemisahan klaster yang lebih
akurat dan stabil pada data ekspresi gen leukemia.

4. Kesimpulan

Penelitian ini menunjukkan bahwa kombinasi optimasi Bayesian dengan Optuna dapat
digunakan secara efektif untuk melakukan hyperparameter tuning pada metode Spectral
Clustering — K-Means (SC-KM) untuk dataset ekspresi gen Leukemia (CuMiDa).
Berdasarkan hasil optimasi 1.000 iterasi, diperoleh kombinasi parameter terbaik yaitu
n_components = 5, affinity = Nearest Neighbors, dan n_neighbors = 6, yang mampu
memproyeksikan data ke ruang embedding yang tepat dan membentuk matriks similaritas
yang sesuai.

Berdasarkan evaluasi menggunakan tiga metrik klastering, yaitu skor Silhouette, indeks
Davies-Bouldin, dan indeks Calinski Harabasz, diperoleh hasil yang konsisten bahwa reduksi
dimensi menggunakan Spectral Embedding (3 eigen vektor) memberikan hasil yang optimal
untuk K-Means. Hasil klastering juga menunjukkan bahwa metode SC-KM menggunakan
optimasi Bayesian mampu memisahkan sampel ke dalam klaster dengan akurasi 92,19%,
lebih tinggi dibandingkan Hierarchical Clustering (40,63%) maupun K-Means (67,19%). Hal
ini menunjukkan bahwa pendekatan Spectral Clustering yang digabung dengan K-Means dan
optimasi hyperparameter dengan Bayesian terbukti lebih efektif untuk mendeteksi pola
subtipe leukemia pada data berdimensi tinggi. Visualisasi heatmap juga memperlihatkan pola
ekspresi gen yang awalnya acak menjadi lebih terkelompok dan seragam di dalam masing-
masing klaster. Secara keseluruhan, penelitian ini menunjukkan bahwa kombinasi Spectral
Clustering-K-Means dan optimasi Bayesian menggunakan Optuna dapat meningkatkan
kualitas klastering pada data ekspresi gen yang kompleks serta membuka peluang penerapan
pendekatan ini atau menggunakan metode lain untuk mengklaster hasil Spectral Embedding
seperti Fuzzy C-Means, Partition Around Medoids (PAM), atau pendekatan klastering
alternatif lainnya pada masalah bioinformatika yang serupa.
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