Aplikasi Deteksi Website Phishing Berbasis Web Menggunakan Random Forest dan Ekstraksi Fitur URL
DOI:
https://doi.org/10.35760/tr.2025.v30i3.71Keywords:
aplikasi berbasis web, deteksi website phishing, ekstraksi fitur URL, random forest, supervised learningAbstract
Advancements in information technology have raised growing concerns among various stakeholders. Phishing attacks have become one of the most common cyber threats, targeting users by imitating legitimate websites to obtain sensitive information. This study aims to develop a web-based application by implementing a supervised learning approach using the Random Forest algorithm to automatically classify URLs as phishing or legitimate. The dataset used consists of 11,054 URL instances with 30 URL-based features. The research process includes data preprocessing, feature extraction, data splitting, and classification model development and evaluation using four data partition scenarios. Model performance was assessed using accuracy, precision, recall, and F1-score as evaluation metrics. The results of the experiments show that the model achieved optimal performance with an 80:20 data split, obtaining an accuracy of 97%, precision of 97%, recall of 98%, and an F1-score of 97%. Furthermore, the trained model was implemented in a web-based application, allowing users to automatically detect URLs.
Downloads
References
[1] Z. Alkhalil, C. Hewage, L. Nawaf, and I. Khan, “Phishing attacks: A recent comprehensive study and a new anatomy,” Frontiers in Computer Science, vol. 3, Art. no. 563060, Mar. 2021, doi: 10.3389/fcomp.2021.563060.
[2] Direktorat Operasi Keamanan Siber, Badan Siber dan Sandi Negara, Lanskap keamanan siber Indonesia 2024, Jakarta, Indonesia: BSSN, 2024.
[3] A. Nugraha and D. Riminarsih, “Evaluasi performa algoritma supervised learning untuk prediksi risiko serangan jantung: Pendekatan rekayasa sistem cerdas,” Jurnal Profesi Insinyur (JPI), vol. 6, pp. 83-88, 2025, doi: 10.23960/jpi.v6n1.169.
[4] N. Awan et al., “Machine learning-enabled power scheduling in IoT-Based Smart Cities,” Computers, Materials and Continua, vol. 67, no. 2, 2021, doi: 10.32604/cmc.2021.014386.
[5] A. Yasmin, S. Kamalakkannan, and P. Kavitha, “Stock market prediction using machine learning models,” in International Conference on Edge Computing and Applications, ICECAA 2022 - Proceedings, 2022, doi: 10.1109/ICECAA55415.2022.9936188.
[6] A. Saxena, “Credit card fraud detection using machine learning and data science,” Int. J. Res. Appl. Sci. Eng. Technol., vol. 10, no. 12, 2022, doi: 10.22214/ijraset.2022.48293.
[7] M. Saraswati and D. Riminarsih, “Analisis sentimen terhadap pelayanan KRL Commuterline berdasarkan data Twitter menggunakan algortima bernoulli naive bayes,” Jurnal Ilmiah Informatika Komputer, vol. 25, no. 3, 2020, doi: 10.35760/ik.2020.v25i3.3256.
[8] I. Arifin and Chairani, “Phishing website detection using a machine learning classification approach,” INOVTEK Polbeng - Seri Informatika, vol. 10, no. 3, 2025, doi: 10.35314/yja1d830.
[9] D. Wahyudi, Aplikasi pendeteksi website phishing menggunakan machine learning, Skripsi, Departemen Teknik Informatika, Fakultas Teknik, Universitas Hasanuddin, Gowa, Indonesia, 2020. [Online] Available: https://repository.unhas.ac.id/id/eprint/3061/4/20_D42115518(FILEminimizer)%20...%20ok.pdf. [Accessed: 20 Februari 2025].
[10] N. B. Putri and A. W. Wijayanto, “Analisis komparasi algoritma klasifikasi data mining dalam klasifikasi website phishing,” Komputika : Jurnal Sistem Komputer, vol. 11, no. 1, 2022, doi: 10.34010/komputika.v11i1.4350.
[11] R. P. Ramadhan and T. Desyani, “Implementasi algoritma J48 untuk identifikasi website phising,” Teknik dan Multimedia, vol. 1, no. 2, 2023.
[12] M. A. Taha, H. D. A. Jabar, and W. K. Mohammed, “A machine learning algorithms for detecting phishing websites: A comparative study,” Iraqi Journal for Computer Science and Mathematics, vol. 5, no. 3, 2024, doi: 10.52866/ijcsm.2024.05.03.015.
[13] A. F. Mahmud and S. Wirawan, “Deteksi phishing website menggunakan machine learning metode klasifikasi,” Sistemasi: Jurnal Sistem Informasi, vol. 13, no. 4, 2024.
[14] A. Kautsar, M. Aida, and A. Yulistia, “Applying random forest algorithm for phishing URL identification,” Journal of Computers and Digital Business, vol. 4, no. 3, 2025, doi: 10.56427/jcbd.v4i3.782.
[15] I G. P. Wiratama and A. A. I. N. E. Karyawati, “Klasifikasi URL berbahaya menggunakan algoritma random forest berbasis fitur struktural”, JNATIA, vol. 4, no. 1, pp. 39–46, Nov. 2025, doi: 10.24843/JNATIA.2025.v04.i01.p05.
[16] A. K. Kencana, F. D. Ananda, A. D. Hartanto, and H. Hartatik, “Implementasi metode random forest klasifikasi untuk phishing link detection,” Intechno Journal (Information Technology Journal), vol. 4, no. 2, 2022, doi: 10.24076/intechnojournal.2022v4i2.1562.
[17] Lukito and W. B. T. Handaya, “Deteksi website phishing menggunakan teknik machine learning,” Jurnal Informatika Atma Jogja, vol. 6, no. 1, 2025, doi: 10.24002/jiaj.v6i1.11538.
[18] C. F. M. Foozy, M. A. I. Anuar, A. Maslan, H. A. M. Adam, and H. Mahdin, “Phishing URLs detection using naives baiyes, random forest and lightgbm algorithms,” International Journal of Data Science, vol. 5, no. 1, 2024, doi: 10.18517/ijods.5.1.56-63.2024.
[19] D. R. Patil, R. B. Wagh, V. D. Punjabi, and S. M. Pardeshi, “Enhanced phishing URLs detection using feature selection and machine learning approaches,” International Journal of Wireless and Microwave Technologies, vol. 14, no. 6, 2024, doi: 10.5815/ijwmt.2024.06.04.
[20] M. U. Javeed, S. M. Aslam, H. A. Sadiqa, A. Raza, M. M. Iqbal, and M. Akram, “Phishing website URL detection using a hybrid machine learning approach,” Journal of Computing and Biomedical Informatics, vol. 9, no. 1, 2025.
[21] L. Breiman, “Random Forests,” Mach. Learn., vol. 45, no. 1, pp. 5–32, 2001.
[22] E. Chandt, “Phishing website detector,” [Online] Available: https://www.kaggle.com/datasets/eswarchandt/phishing-website-detector. [Accessed: 20 Februari 2025].
[23] J. Han, M. Kamber, and J. Pei, Data Mining Concept and Techniques, 3rd ed. 2012.
[24] C. M. Bishop, Bishop - Pattern Recognition and Machine Learning - Springer 2006, vol. 58, no. 12. 2014.
[25] T. Hastie, R. Tibshirani, and J. Friedman, The Elements of Statistical Learning, Second Edition, vol. 27, no. 2. 2009.
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Jurnal Ilmiah Teknologi dan Rekayasa

This work is licensed under a Creative Commons Attribution 4.0 International License.