Analisis Sentimen Terhadap Aplikasi M-Paspor Menggunakan Algoritma Long Short-Term Memory (LSTM) dan BERT Embedding

Bambang Gunawan Hardianto
Universitas Gunadarma
Indonesia
Satrio Wibisono
Universitas Gunadarma
Indonesia

Abstract

The Directorate General of Immigration launched the M-Paspor app for online passport applications. Although it has been downloaded more than 1 million times, its 2.5 rating indicates user dissatisfaction. Review analysis is necessary for developers to understand the issues and improve the app to enhance the overall user experience. Therefore, this study conducts sentiment analysis on M-Paspor app reviews using a combination of Bidirectional Encoder Representations from Transformers (BERT) embedding and LSTM to classify user opinions. The advantage of BERT lies in its ability to understand the deep context of text, while LSTM excels in handling sequential data. LSTM is used as a classification method because it can capture long-term patterns in sequential data through memory management with cell states and three main gates, enabling it to continuously understand sentence context to support sentiment analysis. In this study, labeling consists of three classes: positive, negative, and neutral, using the lexicon method. The LSTM-BERT model shows consistent and higher accuracy values with a smaller proportion of training data. Testing results with a confusion matrix show the highest accuracy of 91.33% on a 70%:30% data split.

Keywords
BERT embedding, LSTM, M-Passport application, sentiment analysis
References

Hasmawaty, Y. T. Utami, and D. Antoni, “Building green smart city capabilities in South Sumatra, Indonesia,” Sustain., vol. 14, no. 13, pp. 1–16, 2022, doi: 10.3390/su14137695.

B. S. Helpiastuti, I. Syaifana, and H. Rohman, “Kualitas pelayanan m-paspor di Kantor Imigrasi Kelas I TPI Jember,” J. Ilm. Manaj. Publik dan Kebijak. Sos., vol. 7, no. 1, pp. 15–30, 2023, [Online]. Available: https://ejournal.unitomo.ac.id/index.php/negara/article/view/5464.

J. Simmich, M. H. Ross, N. E. Andrews, A. Vaezipour, and T. G. Russell, “Content and quality of mobile apps for the monitoring of musculoskeletal or neuropathic pain in Australia: Systematic evaluation,” JMIR mHealth uHealth, vol. 11, no. 1, pp. 1–11, 2023, doi: 10.2196/46881.

Y. H. Tsai, C. C. Lin, and M. H. Lee, “Analysis of application data mining to capture consumer review data on booking websites,” Mobile Inf. Syst., vol. 2022, 2022, doi: 10.1155/2022/3062953.

A. Abayomi-Alli, O. Abayomi-Alli, S. Misra, and L. Fernandez-Sanz, “Study of the Yahoo-Yahoo hash-tag tweets using sentiment analysis and opinion mining algorithms,” Information, vol. 13, no. 3, 2022, doi: 10.3390/info13030152.

M. H. Widianto and Y. Cornelius, “Sentiment analysis towards cryptocurrency and NFT in Bahasa Indonesia for Twitter large amount data using BERT,” Int. J. Intell. Syst. Appl. Eng., vol. 11, no. 1, pp. 303–309, 2023.

A. S. Raihan and I. Ahmed, “A Bi-LSTM autoencoder framework for anomaly detection: A case study of a wind power dataset,” in Proc. IEEE 19th Int. Conf. Autom. Sci. Eng., 2023, doi: 10.1109/CASE56687.2023.10260331.

S. Mohammadi and M. Chapon, “Investigating the performance of fine-tuned text classification models based on BERT,” in Proc. IEEE 22nd Int. Conf. High Perform. Comput. Commun.; IEEE 18th Int. Conf. Smart City; IEEE 6th Int. Conf. Data Sci. Syst. (HPCC-SmartCity-DSS), 2020, pp. 1252–1257, doi: 10.1109/HPCC-SmartCity-DSS50907.2020.00162.

K. Jain and R. Jindal, “NLP-enabled recommendation of gashtags for COVID-based tweets using hybrid BERT-LSTM model,” ACM Trans. Asian Low-Resource Lang. Inf. Process., 2024, doi: 10.1145/3640812.

R. Firdaus, I. Asror, and A. Herdiani, “Lexicon-based sentiment analysis of Indonesian language student feedback evaluation,” Indones. J. Comput., vol. 6, no. 1, pp. 1–12, 2021, doi: 10.34818/indojc.2021.6.1.408.

N. Rai, D. Kumar, N. Kaushik, C. Raj, and A. Ali, “Fake news classification using transformer-based enhanced LSTM and BERT,” Int. J. Cogn. Comput. Eng., vol. 3, pp. 98–105, Mar. 2022, doi: 10.1016/j.ijcce.2022.03.003.

P. F. Muhammad, R. Kusumaningrum, and A. Wibowo, “Sentiment analysis using Word2vec and long short-term memory (LSTM) for Indonesian hotel reviews,” Procedia Comput. Sci., vol. 179, pp. 728–735, 2021, doi: 10.1016/j.procs.2021.01.061.

A. Alsharef, K. Aggarwal, Sonia, D. Koundal, H. Alyami, and D. Ameyed, “An automated toxicity classification on social media using LSTM and word embedding,” Comput. Intell. Neurosci., vol. 2022, 2022, doi: 10.1155/2022/8467349.

M. S. Divate, “Sentiment analysis of Marathi news using LSTM,” Int. J. Inf. Technol., vol. 13, no. 5, pp. 2069–2074, 2021, doi: 10.1007/s41870-021-00702-1.

V. Yadav, P. Verma, and V. Katiyar, “Long short-term memory (LSTM) model for sentiment analysis in social data for e-commerce product reviews in Hindi language,” Int. J. Inf. Technol., vol. 15, no. 2, pp. 759–772, 2023, doi: 10.1007/s41870-022-01010-y.

S. S. Khan, P. K. Mondal, S. Shaqib, N. Ahmed, N. N. I. Prova, and A. Sattar, “Performance analysis of LSTM and Bi-LSTM model with different optimizers in Bangla sentiment analysis,” in Proc. 15th Int. Conf. Comput. Commun. Netw. Technol. (ICCCNT), 2024, doi: 10.1109/ICCCNT61001.2024.10726142.

P. S. Shilpa, S. Jacob, S. Rissa, and P. Vinod, “Context-aware gender and age recognition from smartphone sensors,” in Proc. Int. Conf. Comput. Commun. Secur. Intell. Syst. (IC3SIS), 2021, doi: 10.1109/IC3SIS54991.2022.9885610.

A. K. Chakraborty, S. Das, and A. K. Kolya, “Sentiment analysis of COVID-19 tweets using evolutionary classification-based LSTM model,” in Proc. Res. Appl. Artif. Intell., Aug. 2020, pp. 75–86, doi: 10.1007/978-981-16-1543-6_7.

Y. Abdelwahab, M. Kholief, and A. A. H. Sedky, “Justifying Arabic text sentiment analysis using explainable AI (XAI): LASIK surgeries case study,” Information, vol. 13, no. 11, 2022, doi: 10.3390/info13110536.

M. Mujahid et al., “Data oversampling and imbalanced datasets: An investigation of performance for machine learning and feature engineering,” J. Big Data, vol. 11, no. 1, 2024, doi: 10.1186/s40537-024-00943-4.

F. A. Pratama and A. Romadhony, “Identifikasi komentar toksik dengan BERT,” e-Proceeding Eng., vol. 7, no. 2, pp. 7941–7949, 2020.

A. Rolangon, A. Weku, and G. A. Sandag, “Perbandingan algoritma LSTM untuk analisis sentimen pengguna Twitter terhadap layanan rumah sakit saat pandemi COVID-19,” TeIKa, vol. 13, no. 1, pp. 31–40, 2023, doi: 10.36342/teika.v13i01.3063.

K. Wabang, O. D. Nurhayati, and Farikhin, “Application of the Naïve Bayes classifier algorithm to classify community complaints,” RESTI (Rekayasa Sistem dan Teknologi Informasi), vol. 1, no. 1, pp. 19–25, 2022.

R. A. Pramunendar, D. P. Prabowo, and R. A. Megantara, “Metode recurrent neural network (RNN) dengan arsitektur LSTM untuk analisis sentimen opini publik terkait vaksin COVID-19,” J. Inform. Upgris, vol. 8, no. 1, pp. 44–48, 2022.

C. A. Maharani, B. Warsito, and R. Santoso, “Analisis sentimen vaksin COVID-19 pada Twitter menggunakan recurrent neural network (RNN) dengan algoritma long short-term memory (LSTM),” J. Gaussian, vol. 12, no. 3, pp. 403–413, 2024, doi: 10.14710/j.gauss.12.3.403-413.

R. Belaroussi, S. C. Noufe, F. Dupin, and P. O. Vandanjon, “Polarity of Yelp reviews: A BERT–LSTM comparative study,” Big Data Cogn. Comput., vol. 9, no. 5, pp. 1–25, 2025, doi: 10.3390/bdcc9050140.

Information
PDF
103 times PDF : 39 times