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Abstract 

This paper proposes a new model of signed binary multiplication. This model is 

formulated mathematically and can handle four types of binary multipliers: signed positive 

numbers multiplied by signed positive numbers (SPN-by-SPN); signed positive numbers 

multiplied by signed negative numbers (SPN-by-SNN); signed negative numbers multiplied by 

signed positive numbers (SNN-by-SPN); and signed negative numbers multiplied by signed 

negative numbers (SNN-by-SNN). The proposed model has a low complexity algorithm, is easy 

to implement in software coding and integrated in a hardware FPGA (Field-Programmable 

Gate Array), and is more powerful compared to the modified Baugh-Wooley's model. 
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INTRODUCTION 

 

Currently, automation technology related 

to multimedia data analysis and processing 

based on artificial intelligence continues to be 

developed. The use of Convolutional Neural 

Network (CNN), one of the artificial 

intelligence methods, in the field of image 

processing is constantly expanding: biometrics 

recognition for personal identification [1], 

image recognition [2] [3], autonomous vehicles 

[4], medical diagnostics [5], and so on. In [6] 

proposes the implementation of CNN 

architecture in FPGA (Field-Programmable 

Gate Array) based on mapping and pipeline 

implementation methods on all its layers. A 

convolutional method using Sobel kernels in 

the convolutional layer of CNN and its 

hardware implementation on FPGA was 

proposed in [7]. Other implementation 

methods of acceleration in the deep learning 

network on FPGA are discussed in [8].  

The multiplication and division 

operations are a major part of data processing 

algorithms in AI: Machine learning, CNN, 

and Deep learning. In [9] proposes the 

Stochastic Computing Multiplier method that 

is applied to the implementation of Deep 

Convolutional Neural Networks, where the 

embedment of each perceptron in the NN 

layer performs the same number of 

mathematical operations (additions, products, 

and threshold functions) [10]. Xilinx [11] is 

also developing an implementation model for 

the FPGA Acceleration of Matrix 

Multiplication for artificial neural networks. 

The implementation of all AI algorithms into 

the SoC (FPGA and ASIC) is often 

constrained by the implementation of 

multiplication and division operations. The  

mailto:sarif@staff.gunadarma.ac.id
mailto:misdie@staff.gunadarma.ac.id


57 

 

Madenda, Harmanto, New Approach, ... 

https://doi.org/10.35760/tr.2021.v26i1.3703 

 

constraint in question not only concerns the 

amount of space occupation on the integrated 

circuits (IC) that is related to production 

costs, but also the complexity of its 

implementation method. The multiplication 

model depends on the type of variable values 

used for the multiplicand and multiplier. The 

values of both variables can be unsigned and 

unsigned numbers or signed and unsigned 

numbers or unsigned and signed numbers or 

signed and signed numbers, respectively. 

Signed binary numbers mean that both positive 

and negative numbers may be represented. 

The most significant bit (MSB) indicates the 

sign, where bit sign “0” for signed positive 

number (SPN) and “1” for signed negative 

number (SNN). Unsigned binary numbers 

(UNS) refer to the numbers that only have a 

positive value without a sign bit.  

Signed binary multiplication is one of 

the multiplications that is still a part of 

research topics. Particularly how to develop 

the implementation methods with low 

complexity, low-cost hardware implementation, 

low-power consumption, and faster. Signed 

binary multiplication was introduced by 

Baugh-Wooley [12] and then modified into 

two's complement multiplication, also known 

as modified Baugh-Wooley multiplication 

[13]. Mathematically, the two multiplication 

models are given in equations (1) and (2). 

Figures 1 and 2 show their shift-and-add or 

matrix structure for n = 4. Noted that the 

two's complement multiplication (equation 2) 

has a limitation, it only applies to SNN-by-

SNN multiplication. Equation (1) can process 

four types of multiplication: SPN-by-SPN, 

SPN-by-SNN, SNN-by-SPN, and SNN-by-

SNN, but it needs 3 additional full adders 

(FA: gray color), so there is an increase in 

cost and time delay. This is especially impactful 

when used in algorithms that require tens or 

hundreds of multipliers such as in CNN. This 

paper is focused on modifying equation (1), 

so it has a low complexity algorithm and low-

cost hardware implementation.  
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(a)                                                                          (b) 

Figure 1. Shift-and-add structure of Baugh-Wooley’s signed binary multiplication.  
 

 

            
(a)                                                                          (b) 

Figure 2. Modified Baugh-Wooley or two’s complement multiplication. 

 
 

PROPOSED SIGNED 

MULTIPLICATION MODEL 

 In this section, the new model of signed 

binary multiplication will be outlined. The 

proposed model is expressed mathematically 

and can be easily implemented into software 

algorithms and hardware on FPGA. This 

multiplication model will be proven by using 

several examples. Consider two unsigned 

binary numbers A = {ak-1, ak-2, . . ., a1, a0} and 

B = {bn-1, bn-2, . . ., b1, b0}, where k and n 

respectively are the number of bits. Their 

decimal values can be expressed as shown in 

Equation (1), ,  i = {0, 1, …, k-

1} and j = {0, 1, …, n-1}, ai is the ith 

magnitude bit of A and bj is the jth magnitude 

bit of B. Furthermore, if A and B are signed 

numbers, both can be represented as shown in 

Equation (2). A = { , ak-2, . . ., a1, a0} and 

B = { , bn-2, . . ., b1, b0}, where bits  

and are sign bits, or we call as borrow 

bits which mean = -1ak-1 and = -

1bn-1. If ak-1 = "0", A has a positive value and 

ai represents the magnitude bit. Conversely, if 

ak-1 = "1" then A is negative and ai indicates 

its two's complement bit. The same thing 

applies to B.   
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 In the multiplication process, the 

conversion of unsigned binary numbers to 

signed numbers and from positive to a 

negative value, vice-versa, is necessary. For 

example, if A is an unsigned binary number 

that is always positive, the conversion of A to 

a signed negative number is done through the 

two's complement process as shown in 

equation (3). Because A does not have a sign 

bit, then one bit indicating a negative sign "-

1" must be added to the bit position of 2n and 

then the one's complement process is done by 

inverting the ai bits into  and adding "1" to 

the LSB position of a0. The sign bit "-1" can 

be replaced by a bit symbol “ ”, which means 

a borrowed bit that has a negative value. Take 

an example, for unsigned A = 10102 or its 

decimal numbers is A = 23+21 = 1010. 

Referring to Equation (3), the two's 

complement of A is  -A = 01012 + 12 = 

01102 or in decimal is -24+22+21 = -1010.  

 Next, the conversion of positive to 

negative binary numbers and vice versa is 

given by equation (4). Example, for signed 

binary numbers A = 1112 or in decimal A = -

23+22+21+20 = -110, then its two's complement 

is -A = 0002 +12 =  0012 or -A = 20 = 110. 

Another example, if A = 1112 or A = 

22+21+20 = 710, then its two's complement is -

A = 0002 +12 =  0012 or -A = -23+20 = -710. 

The mathematical representations of unsigned 

and signed binary numbers and their 

conversion will be used to explain our 

proposed multiplication model. 

 Based on equation (4), mathematically, 

the binary representation of signed 

multiplication of Y = B×A is shown by 

equation (5) and then equation (6), where 

 and  are respectively the sign bits 

of A and B. Furthermore, referred to the 

equation (3), the second and third parts of this equation 

can be written in the form of two's complement as
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presented in equations (7) and (8). By inserting both 

into equation (6), then equation (9) is 

obtained. The first part of this equation is 

( + + ) as the sign bit at 

position 2n+k-2 of Y. It should be noted that the 

maximum value of the multiplication result is 

when the values of  A = = -  and B 

= = - , then the MSB of Y 

= ×   =  and Y has a 

positive value. This shows that the sign bit is 

not located at bit position of 2n+k-2, but will be 

relocated at bit position of 2n+k-1. Thus by 

using the logical operation “OR” (symbolized 

by ||), ( + + )2n+k-1 can be 

replaced by ( )2n+k-1 + 

( )2n+k-2 as given in Equation (10). 

This proposed signed binary multiplication 

(SNN/SPN-by- SNN/SPN) simplifies Baugh-

Wooley’s model. 
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The multiplication process of equation 

(10) can be implemented in the software 

mode using algorithm Algo-1. Both variables 

A (k bits) and B (n bits) are signed binary 

numbers, each having one sign bit and k-1, 

and n-1 magnitude bits. The shift-left and 

AND logic operations are respectively 

symbolized by “«” and “&”. Conforming to 

Equation (10), this algorithm consists of five 

parts. First, steps 1 – 3 are accumulator 

initialization and determining MSB value: Sy 

=  11 ||  nk ba , and then save it to the 

accumulator at position Y(n-1). The second 

and third parts in steps 4–6 and steps 7–9 are 

the multiplication processes of 1ka


2k-1 × 

(two's complement of B) and 1nb


2n-1 × (two's 

complement of A), respectively. Each of these 

processes is carried out when the conditions 

are met, and their results are added to the 

accumulator Y.  Fourth, steps 10–15 are the 

multiplication process of bj2
j×A(k-2 : 0), and 

the last part (step 16) sets up the sign bit value 

of the multiplication result 

  out
KN

NK Cba 


1
11 2||


.  In this step, the 

logic process Sy & )( 1pY  is used. It means 

if carry-out (Cout) at Y(p-1) = "1" and Sy = "1" 

(borrow), then the sign bit at Y(p-1) is set to 

be "0", otherwise if carry-out at Y(p-1) = "0" 

then the sign bit at Y(p-1) = Sy. Finally, the 

multiplication result consists of Y(p-1) as the 

sign bit and Y(p-2 : 0) as the magnitude bits.

 

      Algo-1. (SNN/SPN)-by-(SNN/SPN) Multiplication Algorithm:  

                        (+B)×(+A);  (+B)×(-A);  (-B)×(+A)  and  (-B)×(-A) 

Input: signed A(k bits), signed B(n  bits) 

Output: signed Y(p bits)                 
Process : 

1 Y(p-1 : 0)  ←  0;                          

2 Sy ←  A(k-1) || B(n-1);                

3 Y(n-1)  ←  Sy;                           
4 if A(k-1) = 1                               

5         Y ← Y +{Comp(B(n-2 :0))+A(k-1)}; 

6 endif 
7 if  B(n-1) = 1                               

8         Y ← Y +{Comp(A(k-2 :0))+B(n-1)};   

9 endif 
10 for  j =  (n-2) downto 0  

11   Y ←  Y « 1;                                        

12       if  B(j) = 1                                           

13        Y ←  Y + A(k-2 : 0);  
14       endif 

15 endfor  j                                     

16 Y(p-1) ← (Sy  & )1( pY  );          

endprocess 

% unsigned number A and signed number B 

% signed number Y:   p  = (k + n) bits; 
 

%  Accumulator Y  (Acc. Y ) initialized to 0 

%  Set  Sy  = 
11 ||  nk ba

  = 
11 ||  nk ba  

%  Set Sy as MSB to Acc. at position Y(n-1) 

%  If A has a negative value then 

% Add 1

12 



k

ka
 ×two's complement of B without 

sing bit to Acc. Y 

%  If B has a negative value then 

% Add 1

12 



n

nb


×two's complement of A without 

sing bit to Acc.Y 

%  repeat process of  bj2
j×A(k-2: 0), until j 

= 0. 

%  Shift-left one-bit the value of Acc. Y 
%  if  bj=1, then 

%  add A without sing bit, to Acc. Y 

 
%  end repeat 

 

%  Set sign bit at Y(p-1) =(
11 ||  nk ba

 ) + Cout 
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Figure 3. Shift-and-add and matrix structures of proposed signed binary multiplication. 

 
The shift-and-add structure of our 

proposed model can be presented as given by 

an example in Figure 3, where A and B 

respectively have a sign bit a3 and b3, seven 

integer bits a2a1a0 (k = 4) and b2b1b0 (n = 4). 

Figure 3-a, the bits ja3 on the left diagonal-

column and LSB a3 are part of the two's 

complement process of B. On the last line, the 

bits b3  and LSB b3 are part of the two's 

complement process of A. Sign bit  ||  and 

MSB b3||a3 of the multiplication are 

successively located in the bit positions of 27 

(k+n-1=7) and 26 (k+n-2=6). It should also be 

noted that if the sign bit ||  has a value of 

" ", then this bit is negative or is a borrowed 

bit. Furthermore, if the sum of all 

multiplication bits has carry-out equals "1" at 

the bit position of 27, then the sign bit  = 

carry-out + borrow = "1" + " " = "1" + "-1" 

= "0". In Figure 3-b, the proposed 

multiplication model only requires an 

addition of one adder and one AND gate. This 

is more efficient than Baugh-Wooley’s 

model. 

 

IMPLEMENTATION AND RESULTS 

The proposed signed binary multiplication 

algorithm has been implemented using Scilab 

software and in FPGA hardware using Xilinx. 

The processes and results obtained from programming 

coding are illustrated in figures and tables. 

Based on the shift-and-add structure model 

(Figure 3), the proposed (SNN/SPN)-by-(part 

of two's complement process of B and A 

successively. All bits of  ="0" because 

a2="0" and all bits of ="0" because 

b3="0". So, the multiplication result is 

Y=010010.010012, which has a positive value 

because its sign bit Y5="0" and its decimal 

value is Y = 18.2812510. 

 The next example is the SNN-by-SNN 

multiplication, where A = -3.2510 or in binary 

two's complements A = 100.112, which has 

sign bits a2="1" and B = -5.62510 or in binary 

two's complement B = 1010.0112, with sign 

bit b3="1". The binary multiplication process 

of Y = 1010.0112×100.112 is given in figure 4-

b, where its two’s complement parts have sign 

bit || =”1”, MSB b3||a2 =”1”, LSB a2="1" 

and b3="1", and then the multiplication bits of 

      A(k = 4)                           a3       a2        a1     a0 

  × B(n = 4)                           b3      b2        b1        b0  

                                            30ab    b0a2   b0a1  b0a0 

                                   31ab    b1a2   b1a1   b1a0 

                         32ab    b2a2   b2a1   b2a0 

32 || ba


  b3||a3  23ab   13ab  03ab      

                                              a3                               
                                              b3                              + 

     Y7            Y6       Y5        Y4        Y3      Y2         Y1     Y0 

+ 
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a0b1 

 + 

 

a2b0 

 

a1b1 

 + 
 

a3b0 

 

a2b1 

 

+ 

 

a0b2 

 + 

 

a0b0 

 

a1b2 

 + 

 

a2b2 

 

a3b1 

 

+ 

 

a0b3 

 + 

 

a1b3 

 + 

 

a2b3 

 

a3b2 

 

+ 

 

+ 

 

Y0 

 

+ 

 

a3||b3 

 

Y1 

 

Y2 

 

Y3 

 

Y4 

 

Y5 

 

Y6 

 

Y7 

 

b3 

 

3a


 
|| 

 

3b


 

+ 

 

a3 
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="0" when bj="1" and  ="1" when 

bj="0", as well as for the multiplication bits 

of ="0" when ai="1" and ="1" when 

ai="0". For this example, the sum of all bits 

has a carry-out "1" at the sign bit position of 

25, then the new sign bit equals carry-out + 

sign bit = "1" + ("-1") = "0", so the 

multiplication result Y = 010010.010012 has 

the sign positive and its decimal value is 

18.2812510. 

 The third example is the SNN-by-SPN 

multiplication shown in figure 15-c, which is 

Y = 1010.0112×011.012 or in decimal Y = (-

5.62510)×(+3.2510). The two’s complement 

part of this multiplication has a sign bit 

|| =”1”, MSB b3||a2 =”1”, LSB a2="0" 

and b3="1", all bits of ="0" because 

a2="0" and the multiplication bits of 

="0" when ai="1" and ="1" when 

ai="0".  The multiplication result Y = 

101101.101112 has the sign negative and its 

decimal value is -18.2812510.  The fourth 

example shown in figure 4-d is the SPN-by-

SNN multiplication, which is Y = 

0101.1012×100.112 or in decimal, Y = 

(+5.62510)×(-3.2510). The two’s complement 

part of this multiplication has a sign bit 

|| =”1”, MSB b3||a2 =”1”, LSB a2="1" 

and b3="0", all bits of ="0" because 

b3="0" and the multiplication bits of   

="0" when bj="1" and ="1" when 

bj="0".  The multiplication result Y = 

101101.101112 has the sign negative and its 

decimal value is -18.2812510. All the results 

of examples in figures 4-a to 4-p are 

summarized in Table 1. 

The proposed multiplication model is 

implemented in FPGA using Xilinx software, 

ISE Design Suite 14.7. Two implementation 

approaches are carried out by employing 

LUTs (LUT6 and LUT5), fast carry logics: 

Carry4, MUXCY, and XORCY resources. 

The first approach uses a sequential shift-and-

add process or serial-parallel multiplier based 

on Algo-1 and the second one is a parallel 

multiplier or array multiplier referring to 

matrix structure in Figure 4-b. Both are 

designed for 8 bits (n = k = 8) signed binary 

integer numbers.   
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Figure 4. Examples of the proposed (SNN/SPN)-by-(SNN/SPN) multiplication. 

  

Table 1. Results of sixteen examples in figure 4. 

Y = (+B) × (+A) Y = (-B) × (-A) Y = (-B) × (+A) Y  = (+B) × (-A) 
0101.1012 × 011.012 

=  010010.010012 

5.62510 × 3.2510 

=  18.2812510 

1010.0112 × 100.112 

=  010010.010012 

-5.62510 × -3.2510 

=  18.2812510 

1010.0112 × 011.012 

=  101101.101112 

-5.625 × 3.2510 

=  -18.2812510 

0101.1012 × 100.112 

=  101101.101112 

5.625 × -3.2510 

=  -18.2812510 

0101101012×0.101110112 

= 010000100.001101112 

18110 × 0.7304687510 

1010010112×1.010001012 

= 010000100.001101112 

-18110 × -0.7304687510 

1010010112×0.101110112 

= 101111011.110010012 

-18110 × 0.7304687510 

0101101012×1.010001012 

= 101111011.110010012 

18110 × -0.7304687510 

     A    011.01 

 × B   0101.101      

                   0 
                  .01101 

                0.0000   

              01.101 

            011.01 

          0000.0 

        01101 

    000000 

              0            + 

    0010010.01001      

     A    011.01 

 × B   1010.011      

                  0 
                 .01101 

               0.1101   

             00.000 

           000.00 

         0110.1 

       00000 

   110010 

             1            + 

   1101101.10111      

   A                  0.10111011 

 ×B  010110101      

                        0 

                        0.10111011 

                      00.0000000 

                    010.111011 

                  0000.00000 

                01011.1011 

              010111.011 

            0000000.00 

          01011101.1 

      0000000000 

                        0                + 

      0010000100.00110111 

    A         0001101 

 × B         1010011      

                0 
                0001101 

              0001101 

            0000000 

          0000000 

        0001101 

      0000000         

  11110010 
                1           + 

  11110110110111      

    A         0001101 

 × B         0101101      

                0 
                0001101 

              0000000 

            0001101 

          0001101 

        0000000 

      0001101 

  00000000  

                0           + 

  00001001001001      

(i) (j) 

    A   0.01100110 

 × B   0.1101      

                   0 
                   001100110 

                 000000000 

               001100110 

             001100110 

        00.00000000 
                           0        + 

        00.010100101110 

(m) 

    A   1.10011010 

 × B   1.0011      

                   1 
                   010011010 

                 010011010 

               100000000 

             100000000 

        11.01100101 

                           1        + 

        00.010100101110 

(n) 

   A                   0.10111011 

 ×B   101001011      

                         0 
                         0.10111011 

                       01.0111011  

                     000.000000 

                   0101.11011 

                 00000.0000 

               000000.000 

             0101110.11 

           00000000.0 

       1101000100 

                         1                + 

       1101111011.11001001 

(a) (c) 

(e) (f) 

     A   100.11 

 × B  0101.101      

                  1 
                 .00011 

               1.0000   

             00.011 

           000.11 

         1000.0 

       00011 

   110000 

             0            + 

   1101101.10111      

(d) 

    A    100.11 

× B   1010.011      

                  1 
                 .00011 

               0.0011   

             10.000 

           100.00 

         0001.1 

       10000 

   111100 

             1            + 

   0010010.01001      

(b) 

   A                   1.01000101 

 ×B   010110101      

                         1 
                         0.01000101 
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                     001.000101 
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                         0                + 

       1101111011.11001001 

   A                  1.01000101 

 ×B  101001011      

                        1 
                        0.01000101 

                      00.1000101 

                    100.000000 

                  0010.00101 

                10000.0000 

              100000.000 

            0010001.01 

          10000000.0 

      1110111010 

                        1                + 

      0010000100.00110111 

(g) (h) 

   A            1110011 

 × B           1010011      

                  1 
                  0110011 

                0110011 

              1000000 

            1000000 

          0110011 

        1000000         

    11001100 

                  1           + 

    00001001001001      

    A           1110011 

 × B           0101101      

                  1 

                  0110011 

                1000000 

              0110011 

            0110011 

          1000000 

        0110011 

    11000000 
                  0           + 

    11110110110111      

(k) (l) 

    A   0.01100110 

 × B   1.0011      

                   0 
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        11.10011001 

                           1        + 

        11.101011010010 
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                         0        + 
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=  132.2148437510 =  132.2148437510 =  -132.2148437510 =  -132.2148437510 

01011012 × 00011012 

=  00010010010012 

4510 × 1310 = 58510 

10100112 × 11100112 

=  00010010010012 

-4510 × -1310 = 58510 

10100112 × 00011012 

=  11101101101112 

-4510 × 1310 = -58510 

01011012 × 11100112 

=  11101101101112 

4510 × -1310 = -58510 

0.11012 × 0.011001102 

=  0.0101001011102 

0.812510 × 0.398437510 

=  0.3237304687510 

1.00112 × 1.100110102 

=  0.0101001011102 

-0.812510 × -0.398437510 

=  0.3237304687510 

1.00112 × 0.011001102 

=  1.1010110100102 

-0.812510 × 0.398437510 

= -0.3237304687510 

0.11012 × 1.10011010 2 

=  1.1010110100102 

0.812510 × -0.398437510 

= -0.3237304687510 

 

 
Figure 5. RTL Schematic of 8x8 bits signed binary serial-parallel multiplier 

 

Figure 5 shows the FPGA RTL 

schematic of 8x8 bits signed binary serial-

parallel multiplier. The FPGA resources used 

are presented in table 2: eleven LUT's as a 

logical multiplication function; two Carry4s 

and sixteen flip-flops as accumulators (adders 

and shift registers); eight flip-flops as a 

multiplier shift register; and one counter of 3 

bits to control the multiplication process. This 

multiplier has a maximum combinational path 

delay of 1.485 ns, can be operated at a 

maximum frequency of 350.262 MHz, and 

needs 8 cycles to finish the multiplication 

process. Its simulation results, carried out by 

applying the values in Figures 4-i to 4-l and in 

the third row of table 1, are shown in Figure 

6. The multiplication process starts when the 

"Reset" signal changes from "1" to "0" and at 

the first rising edge clock. At each clock, the 

multiplication value continues to change, until 

the end process at the eighth clock and is 

followed by the "Reset" signal change from 

"0" to "1". The products of B×A are given in 

decimal and located at the 8th, 16th, 24th and 

32th clock respectively for: 4510×1310=58510, 

(-4510)×(-1310)=58510, (-4510)×1310=-58510, 

and 4510×(-1310)=-58510.    
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Figure 6. Simulation results of 8x8 bits signed binary serial-parallel multiplier. 

 

 
Figure 7. RTL Schematic of 8x8 bits signed binary parallel multiplier.  

 

 
Figure 8. Simulation results of 8x8 bits signed binary parallel multiplier. 

 

 
(a) 

 
(b) 
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Table 2. FPGA resources occupied by 8x8 bits Serial-parallel and parallel multipliers. 

Multiplier 

implementation 

approach 

Carry 

logic. 

Carry4 

Counter 
Occupied 

FFs  

Occupied 

LUTs 

Occupied 

Slices 

Delay  

(ns) 

Clock 

cycle  

Maximum 

Frequency 

(MHz)  

Serial-parallel 2 1 (3 bits) 25 19 12 1.485 8 350.262 

Parallel  14 - - 57 15 11.233 1 87.719 

 
Figure 7 shows the FPGA RTL schematic of 

8x8 bits signed binary parallel multiplier. 

This multiplier occupies FPGA resources of 

14 Carry4 and 57 LUTs in 15 slices and 

performs the multiplication process in one 

cycle with a time delay of 11.233 ns.  Its 

simulation results are given in Figure 8 

respectively for: 4510×1310=58510, (-4510)×(-

1310)=58510, (-4510)×1310=-58510, and 4510×(-

1310)=-58510. 

 

CONCLUSION AND FUTURE WORK 

 

New signed binary multiplication has 

been proposed and formulated 

mathematically. This formula is easily 

implemented in software coding with a low 

complexity algorithm.  Its hardware 

implementation in the FPGA is also quite 

easy, either in the form of the serial-parallel 

multiplier and parallel multiplier. Both are 

implemented by optimizing the use of LUT5 

and LUT6 for multiplication logic functions, 

fast carry logic Carry4, MUXCY, and 

XORCY so that fewer FPGA resources are 

occupied.  

Further research is being carried out on 

hardware implementation using several 

existing methods: Cascade multiplier, 

Wallace tree multiplier, Vedic multiplier, and 

booth multiplier. 

 

REFERENCES 

 

[1]  Y. Chen, S. Duffner, A. Stoian, J.-Y. 

Dufour, A. Baskurta, “Deep and low-

level feature based attribute learning for 

person re-identification,” Image Vis. 

Comput., vol. 79. pp 25–34, 2018. 

[2] X. Cheng, J. Lu, J. Feng, B. Yuan, J. 

Zhou, “Scene recognition with 

objectness,” Pattern Recognition, vol. 

74. pp 474–487, 2018. 

[3] J. Zhang, K. Shao, X. Luo, “Small 

sample image recognition using 

improved Convolutional Neural 

Network,” J. Vis. Commun. Image 

Represent, vol. 55, pp 640–647, 2018. 

[4] S.S. Sarikan, A.M. Ozbayoglu, O. Zilcia, 

“Automated vehicle classification with 

image processing and computational 

intelligence,”  Procedia Comput. Sci., 

vol. 114, pp 515–522, 2017. 

[5] A. Qayyum, S.M. Anwar, M. Awais, M. 

Majid, “Medical image retrieval using 

deep convolutional neural network,” 

Neurocomputing, vol. 266, pp 8–20, 

2017. 



68 

 

   Jurnal Ilmiah Teknologi dan Rekayasa Volume 26 No. 1 April 2021 

 

[6] L. Gong, C. Wang, X. Li, H. Chen, X. 

Zhou, “MALOC: A fully pipelined 

FPGA accelerator for convolutional 

neural networks with all layers mapped 

on chip,” IEEE Trans. Comput.-Aided 

Des. Integr. Circuits Syst, vol. 37, no. 11, 

pp 2601–2612, 2018. 

[7] N.I. Chervyakov, P.A. Lyakhov, M.V. 

Valueva, “Increasing of Convolutional 

Neural Network performance using 

residue number system,” International 

Multi-Conference on Engineering, 

Computer and Information Sciences 

(SIBIRCON), pp. 135–140, 2017. 

[8] A. Shawahna, S.M. Sait, A. El-Maleh, 

“FPGA-based accelerators of deep 

learning networks for learning and 

classification: A review,” IEEE Access, 

vol. 7, 7823–7859, 2019. 

[9]  H. Sim and J. Lee, "A New Stochastic 

Computing Multiplier with Application 

to Deep Convolutional Neural 

Networks", 2017 54th ACM/EDAC/IEEE 

Design Automation Conference (DAC), 

Jun. 2017. 

[10] Juan Renteria-Cedano 1 , Jorge Rivera 

2,* , F. Sandoval-Ibarra 1 , Susana 

Ortega-Cisneros 1 and Raúl Loo-Yau 1, 

SoC Design Based on a FPGA for a 

Configurable Neural Network Trained by 

Means of an EKF, Electronics 2019, 8, 

761; doi:10.3390/electronics8070761 

www.mdpi.com/journal/electronics 

[11]  FPGA Acceleration of Matrix 

Multiplication for Neural Networks 

(xilinx.com) XAPP1332 (v1.0) 

February 27, 2020 www.xilinx.com 

Application Note. 

[12] Baugh C.R., Wooley B.A., A Two’s 

Complement Parallel Array 

Multiplication Algorithm. IEEE Trans. 

Comput. C-22, pp 1045–1047, 1973. 

 [13]  PramodiniMohanty, RashmiRanjan, 

“An Efficient Baugh Wooley 

Architecture for Both Signed & 

Unsigned Multiplication”, International 

Journal of Computer Science and 

Engineering Technology, vol. 3, no. 4, 

April 2012. 

 

 

 

 

 

 

 

 

 

 

 

http://www.mdpi.com/journal/electronics
https://www.xilinx.com/support/documentation/application_notes/xapp1332-neural-networks.pdf
https://www.xilinx.com/support/documentation/application_notes/xapp1332-neural-networks.pdf
https://www.xilinx.com/support/documentation/application_notes/xapp1332-neural-networks.pdf

