
56

 Jurnal Ilmiah Teknologi dan Rekayasa Volume 26 No. 1 April 2021

NEW APPROACH OF SIGNED BINARY NUMBERS

MULTIPLICATION AND ITS IMPLEMENTATION ON FPGA

1
Sarifuddin Madenda,

2
Suryadi Harmanto

1,2Fakultas Teknologi Industri, Universitas Gunadarma

Jl. Margonda Raya No. 100, Depok 16424, Jawa Barat
1sarif@staff.gunadarma.ac.id, 2misdie@staff.gunadarma.ac.id

Abstract

This paper proposes a new model of signed binary multiplication. This model is

formulated mathematically and can handle four types of binary multipliers: signed positive

numbers multiplied by signed positive numbers (SPN-by-SPN); signed positive numbers

multiplied by signed negative numbers (SPN-by-SNN); signed negative numbers multiplied by

signed positive numbers (SNN-by-SPN); and signed negative numbers multiplied by signed

negative numbers (SNN-by-SNN). The proposed model has a low complexity algorithm, is easy

to implement in software coding and integrated in a hardware FPGA (Field-Programmable

Gate Array), and is more powerful compared to the modified Baugh-Wooley's model.

Keywords: Signed binary numbers, signed multiplication, algorithm, multiplier circuit, FPGA

INTRODUCTION

Currently, automation technology related

to multimedia data analysis and processing

based on artificial intelligence continues to be

developed. The use of Convolutional Neural

Network (CNN), one of the artificial

intelligence methods, in the field of image

processing is constantly expanding: biometrics

recognition for personal identification [1],

image recognition [2] [3], autonomous vehicles

[4], medical diagnostics [5], and so on. In [6]

proposes the implementation of CNN

architecture in FPGA (Field-Programmable

Gate Array) based on mapping and pipeline

implementation methods on all its layers. A

convolutional method using Sobel kernels in

the convolutional layer of CNN and its

hardware implementation on FPGA was

proposed in [7]. Other implementation

methods of acceleration in the deep learning

network on FPGA are discussed in [8].

The multiplication and division

operations are a major part of data processing

algorithms in AI: Machine learning, CNN,

and Deep learning. In [9] proposes the

Stochastic Computing Multiplier method that

is applied to the implementation of Deep

Convolutional Neural Networks, where the

embedment of each perceptron in the NN

layer performs the same number of

mathematical operations (additions, products,

and threshold functions) [10]. Xilinx [11] is

also developing an implementation model for

the FPGA Acceleration of Matrix

Multiplication for artificial neural networks.

The implementation of all AI algorithms into

the SoC (FPGA and ASIC) is often

constrained by the implementation of

multiplication and division operations. The

mailto:sarif@staff.gunadarma.ac.id
mailto:misdie@staff.gunadarma.ac.id

57

Madenda, Harmanto, New Approach, ...

https://doi.org/10.35760/tr.2021.v26i1.3703

constraint in question not only concerns the

amount of space occupation on the integrated

circuits (IC) that is related to production

costs, but also the complexity of its

implementation method. The multiplication

model depends on the type of variable values

used for the multiplicand and multiplier. The

values of both variables can be unsigned and

unsigned numbers or signed and unsigned

numbers or unsigned and signed numbers or

signed and signed numbers, respectively.

Signed binary numbers mean that both positive

and negative numbers may be represented.

The most significant bit (MSB) indicates the

sign, where bit sign “0” for signed positive

number (SPN) and “1” for signed negative

number (SNN). Unsigned binary numbers

(UNS) refer to the numbers that only have a

positive value without a sign bit.

Signed binary multiplication is one of

the multiplications that is still a part of

research topics. Particularly how to develop

the implementation methods with low

complexity, low-cost hardware implementation,

low-power consumption, and faster. Signed

binary multiplication was introduced by

Baugh-Wooley [12] and then modified into

two's complement multiplication, also known

as modified Baugh-Wooley multiplication

[13]. Mathematically, the two multiplication

models are given in equations (1) and (2).

Figures 1 and 2 show their shift-and-add or

matrix structure for n = 4. Noted that the

two's complement multiplication (equation 2)

has a limitation, it only applies to SNN-by-

SNN multiplication. Equation (1) can process

four types of multiplication: SPN-by-SPN,

SPN-by-SNN, SNN-by-SPN, and SNN-by-

SNN, but it needs 3 additional full adders

(FA: gray color), so there is an increase in

cost and time delay. This is especially impactful

when used in algorithms that require tens or

hundreds of multipliers such as in CNN. This

paper is focused on modifying equation (1),

so it has a low complexity algorithm and low-

cost hardware implementation.

  


































2

0

2

0

2

0

1
1

2

0

1
1

1
11

22
1111

12

22

22)(2)(2

n

j

n

j

ji
n

i
ji

Nj
jn

n

i

ni
ni

n
nn

n
nnnn

n

baba

babababaY

(1)

  



























2

0

2

0

2

0

1
1

2

0

1
1

22
11

12 222222
n

j

n

j

ji
n

i
ji

nj
nj

n

i

ni
iN

nn
nn

n baababbaY

(2)

58

 Jurnal Ilmiah Teknologi dan Rekayasa Volume 26 No. 1 April 2021

(a) (b)

Figure 1. Shift-and-add structure of Baugh-Wooley’s signed binary multiplication.

(a) (b)

Figure 2. Modified Baugh-Wooley or two’s complement multiplication.

PROPOSED SIGNED

MULTIPLICATION MODEL

 In this section, the new model of signed

binary multiplication will be outlined. The

proposed model is expressed mathematically

and can be easily implemented into software

algorithms and hardware on FPGA. This

multiplication model will be proven by using

several examples. Consider two unsigned

binary numbers A = {ak-1, ak-2, . . ., a1, a0} and

B = {bn-1, bn-2, . . ., b1, b0}, where k and n

respectively are the number of bits. Their

decimal values can be expressed as shown in

Equation (1), , i = {0, 1, …, k-

1} and j = {0, 1, …, n-1}, ai is the ith

magnitude bit of A and bj is the jth magnitude

bit of B. Furthermore, if A and B are signed

numbers, both can be represented as shown in

Equation (2). A = { , ak-2, . . ., a1, a0} and

B = { , bn-2, . . ., b1, b0}, where bits

and are sign bits, or we call as borrow

bits which mean = -1ak-1 and = -

1bn-1. If ak-1 = "0", A has a positive value and

ai represents the magnitude bit. Conversely, if

ak-1 = "1" then A is negative and ai indicates

its two's complement bit. The same thing

applies to B.

 A(k = 4) a3 a2 a1 a0

 × B(n = 4) b3 b2 b1 b0

 b0a2 b0a1 b0a0

 b1a2 b1a1 b1a0

 b2a2 b2a1 b2a0

 -1 b3a3

 a3

 b3 +

 Y7 Y6 Y5 Y4 Y3 Y2 Y1 Y0

+

a1b0

a0b1

 +

a2b0

a1b1

 +

a3b0

a2b1

+

a0b2

 +

a0b0

a1b2

 +

a2b2

a3b1

+

a0b3

 +

a1b3

 +

a2b3

a3b2

+

+

Y0

+

a3b3

Y1

Y2

Y3

Y4

Y5

Y6

Y7

+

a3

 +

-1

+

b3

a3

b3

 A(k = 4) a3 a2 a1 a0

 × B(n = 4) b3 b2 b1 b0

 b0a2 b0a1 b0a0

 b1a2 b1a1 b1a0

 b2a2 b2a1 b2a0

 1 b3a3

 a3
 b3 +

 Y7 Y6 Y5 Y4 Y3 Y2 Y1 Y0

+

a1b0

a0b1

 +

a2b0

a1b1

 +

a3b0

a2b1

+

a0b2

 +

a0b0

a1b2

 +

a2b2

a3b1

+

a0b3

 +

a1b3

 +

a2b3

a3b2

+

+

Y0

+

a3b3

Y1

Y2

Y3

Y4

Y5

Y6

Y7

+

a3

 +

 1

b3

59

Madenda, Harmanto, New Approach, ...

https://doi.org/10.35760/tr.2021.v26i1.3703






1

0

2
k

i

i
iaA and 





1

0

2
n

j

j
jbB (1)









2

0

1
1 22

k

i

i
i

k
k aaA


 and 







2

0

1
1 22

n

j

j
j

n
n bbB


 (2)

0
1

0

222.1 












k

i

i
i

k aA or 0
1

0

222.1 












k

i

i
i

k aA


 (3)









2

0

1
1 22

k

i

i
i

k
k aaA


 and (4)

 In the multiplication process, the

conversion of unsigned binary numbers to

signed numbers and from positive to a

negative value, vice-versa, is necessary. For

example, if A is an unsigned binary number

that is always positive, the conversion of A to

a signed negative number is done through the

two's complement process as shown in

equation (3). Because A does not have a sign

bit, then one bit indicating a negative sign "-

1" must be added to the bit position of 2n and

then the one's complement process is done by

inverting the ai bits into and adding "1" to

the LSB position of a0. The sign bit "-1" can

be replaced by a bit symbol “ ”, which means

a borrowed bit that has a negative value. Take

an example, for unsigned A = 10102 or its

decimal numbers is A = 23+21 = 1010.

Referring to Equation (3), the two's

complement of A is -A = 01012 + 12 =

01102 or in decimal is -24+22+21 = -1010.

 Next, the conversion of positive to

negative binary numbers and vice versa is

given by equation (4). Example, for signed

binary numbers A = 1112 or in decimal A = -

23+22+21+20 = -110, then its two's complement

is -A = 0002 +12 = 0012 or -A = 20 = 110.

Another example, if A = 1112 or A =

22+21+20 = 710, then its two's complement is -

A = 0002 +12 = 0012 or -A = -23+20 = -710.

The mathematical representations of unsigned

and signed binary numbers and their

conversion will be used to explain our

proposed multiplication model.

 Based on equation (4), mathematically,

the binary representation of signed

multiplication of Y = B×A is shown by

equation (5) and then equation (6), where

 and are respectively the sign bits

of A and B. Furthermore, referred to the

equation (3), the second and third parts of this equation

can be written in the form of two's complement as

60

 Jurnal Ilmiah Teknologi dan Rekayasa Volume 26 No. 1 April 2021

presented in equations (7) and (8). By inserting both

into equation (6), then equation (9) is

obtained. The first part of this equation is

(+ +) as the sign bit at

position 2n+k-2 of Y. It should be noted that the

maximum value of the multiplication result is

when the values of A = = - and B

= = - , then the MSB of Y

= × = and Y has a

positive value. This shows that the sign bit is

not located at bit position of 2n+k-2, but will be

relocated at bit position of 2n+k-1. Thus by

using the logical operation “OR” (symbolized

by ||), (+ +)2n+k-1 can be

replaced by ()2n+k-1 +

()2n+k-2 as given in Equation (10).

This proposed signed binary multiplication

(SNN/SPN-by- SNN/SPN) simplifies Baugh-

Wooley’s model.


































2

0

1
1

2

0

1
1 2222

n

j

j
j

n
n

k

i

i
i

k
k bbaaY


 (5)

        





























2

0

2

0

2

0

1
1

2

0

1
1

1
1

1
1 2222222

n

j

n

i

ji
ij

k

i

i
i

n
n

n

j

k
k

j
j

k
k

n
n ababababY


 (6)

where   




















2

0

1
1

1
1

2
1

2

0

1
1 22222

n

j

kj
kj

k
k

nk
k

n

j

k
k

j
j abaaab



 (7)

and   




















2

0

1
1

1
1

2
1

2

0

1
1 22222

k

i

ni
in

n
n

nk
n

k

i

i
i

n
n abbbab


 (8)

then

 

 



































2

0

2

0

2

0

1
1

2

0

1
1

1
1

1
1

2
1111

22

2222

n

j

k

i

ji
ij

k

i

ni
in

n

j

kj
kj

n
n

k
k

nk
nknk

abab

abbababaY


(9)

   

    

  
    



ijn

k

abtionMultiplica

n

j

k

i

ji
ji

Aofcom plementstwoandbtionMultiplica

n
n

k

i

ni
ni

Bofcom plementstwoandationMultiplica

k
k

n

j

kj
jk

MSB

nk
nk

bitSign

nk
nk

babba

abababaY

:

2

0

2

0

':

1
1

2

0

1
1

':

1
1

2

0

1
1

2
11

1
11

222

222||2||

1

1

 























































 (10)

61

Madenda, Harmanto, New Approach, ...

https://doi.org/10.35760/tr.2021.v26i1.3703

The multiplication process of equation

(10) can be implemented in the software

mode using algorithm Algo-1. Both variables

A (k bits) and B (n bits) are signed binary

numbers, each having one sign bit and k-1,

and n-1 magnitude bits. The shift-left and

AND logic operations are respectively

symbolized by “«” and “&”. Conforming to

Equation (10), this algorithm consists of five

parts. First, steps 1 – 3 are accumulator

initialization and determining MSB value: Sy

=  11 ||  nk ba , and then save it to the

accumulator at position Y(n-1). The second

and third parts in steps 4–6 and steps 7–9 are

the multiplication processes of 1ka


2k-1 ×

(two's complement of B) and 1nb


2n-1 × (two's

complement of A), respectively. Each of these

processes is carried out when the conditions

are met, and their results are added to the

accumulator Y. Fourth, steps 10–15 are the

multiplication process of bj2
j×A(k-2 : 0), and

the last part (step 16) sets up the sign bit value

of the multiplication result

  out
KN

NK Cba 


1
11 2||


. In this step, the

logic process Sy &)(1pY is used. It means

if carry-out (Cout) at Y(p-1) = "1" and Sy = "1"

(borrow), then the sign bit at Y(p-1) is set to

be "0", otherwise if carry-out at Y(p-1) = "0"

then the sign bit at Y(p-1) = Sy. Finally, the

multiplication result consists of Y(p-1) as the

sign bit and Y(p-2 : 0) as the magnitude bits.

 Algo-1. (SNN/SPN)-by-(SNN/SPN) Multiplication Algorithm:

 (+B)×(+A); (+B)×(-A); (-B)×(+A) and (-B)×(-A)

Input: signed A(k bits), signed B(n bits)

Output: signed Y(p bits)
Process :

1 Y(p-1 : 0) ← 0;

2 Sy ← A(k-1) || B(n-1);

3 Y(n-1) ← Sy;
4 if A(k-1) = 1

5 Y ← Y +{Comp(B(n-2 :0))+A(k-1)};

6 endif
7 if B(n-1) = 1

8 Y ← Y +{Comp(A(k-2 :0))+B(n-1)};

9 endif
10 for j = (n-2) downto 0

11 Y ← Y « 1;

12 if B(j) = 1

13 Y ← Y + A(k-2 : 0);
14 endif

15 endfor j

16 Y(p-1) ← (Sy &)1(pY);

endprocess

% unsigned number A and signed number B

% signed number Y: p = (k + n) bits;

% Accumulator Y (Acc. Y) initialized to 0

% Set Sy =
11 ||  nk ba

 =
11 ||  nk ba

% Set Sy as MSB to Acc. at position Y(n-1)

% If A has a negative value then

% Add 1

12 



k

ka
 ×two's complement of B without

sing bit to Acc. Y

% If B has a negative value then

% Add 1

12 



n

nb


×two's complement of A without

sing bit to Acc.Y

% repeat process of bj2
j×A(k-2: 0), until j

= 0.

% Shift-left one-bit the value of Acc. Y
% if bj=1, then

% add A without sing bit, to Acc. Y

% end repeat

% Set sign bit at Y(p-1) =(
11 ||  nk ba

) + Cout

62

 Jurnal Ilmiah Teknologi dan Rekayasa Volume 26 No. 1 April 2021

Figure 3. Shift-and-add and matrix structures of proposed signed binary multiplication.

The shift-and-add structure of our

proposed model can be presented as given by

an example in Figure 3, where A and B

respectively have a sign bit a3 and b3, seven

integer bits a2a1a0 (k = 4) and b2b1b0 (n = 4).

Figure 3-a, the bits ja3 on the left diagonal-

column and LSB a3 are part of the two's

complement process of B. On the last line, the

bits b3 and LSB b3 are part of the two's

complement process of A. Sign bit || and

MSB b3||a3 of the multiplication are

successively located in the bit positions of 27

(k+n-1=7) and 26 (k+n-2=6). It should also be

noted that if the sign bit || has a value of

" ", then this bit is negative or is a borrowed

bit. Furthermore, if the sum of all

multiplication bits has carry-out equals "1" at

the bit position of 27, then the sign bit =

carry-out + borrow = "1" + " " = "1" + "-1"

= "0". In Figure 3-b, the proposed

multiplication model only requires an

addition of one adder and one AND gate. This

is more efficient than Baugh-Wooley’s

model.

IMPLEMENTATION AND RESULTS

The proposed signed binary multiplication

algorithm has been implemented using Scilab

software and in FPGA hardware using Xilinx.

The processes and results obtained from programming

coding are illustrated in figures and tables.

Based on the shift-and-add structure model

(Figure 3), the proposed (SNN/SPN)-by-(part

of two's complement process of B and A

successively. All bits of ="0" because

a2="0" and all bits of ="0" because

b3="0". So, the multiplication result is

Y=010010.010012, which has a positive value

because its sign bit Y5="0" and its decimal

value is Y = 18.2812510.

 The next example is the SNN-by-SNN

multiplication, where A = -3.2510 or in binary

two's complements A = 100.112, which has

sign bits a2="1" and B = -5.62510 or in binary

two's complement B = 1010.0112, with sign

bit b3="1". The binary multiplication process

of Y = 1010.0112×100.112 is given in figure 4-

b, where its two’s complement parts have sign

bit || =”1”, MSB b3||a2 =”1”, LSB a2="1"

and b3="1", and then the multiplication bits of

 A(k = 4) a3 a2 a1 a0

 × B(n = 4) b3 b2 b1 b0

 30ab b0a2 b0a1 b0a0

 31ab b1a2 b1a1 b1a0

 32ab b2a2 b2a1 b2a0

32 || ba


 b3||a3 23ab 13ab 03ab

 a3
 b3 +

 Y7 Y6 Y5 Y4 Y3 Y2 Y1 Y0

+

a1b0

a0b1

 +

a2b0

a1b1

 +

a3b0

a2b1

+

a0b2

 +

a0b0

a1b2

 +

a2b2

a3b1

+

a0b3

 +

a1b3

 +

a2b3

a3b2

+

+

Y0

+

a3||b3

Y1

Y2

Y3

Y4

Y5

Y6

Y7

b3

3a


||

3b


+

a3

63

Madenda, Harmanto, New Approach, ...

https://doi.org/10.35760/tr.2021.v26i1.3703

="0" when bj="1" and ="1" when

bj="0", as well as for the multiplication bits

of ="0" when ai="1" and ="1" when

ai="0". For this example, the sum of all bits

has a carry-out "1" at the sign bit position of

25, then the new sign bit equals carry-out +

sign bit = "1" + ("-1") = "0", so the

multiplication result Y = 010010.010012 has

the sign positive and its decimal value is

18.2812510.

 The third example is the SNN-by-SPN

multiplication shown in figure 15-c, which is

Y = 1010.0112×011.012 or in decimal Y = (-

5.62510)×(+3.2510). The two’s complement

part of this multiplication has a sign bit

|| =”1”, MSB b3||a2 =”1”, LSB a2="0"

and b3="1", all bits of ="0" because

a2="0" and the multiplication bits of

="0" when ai="1" and ="1" when

ai="0". The multiplication result Y =

101101.101112 has the sign negative and its

decimal value is -18.2812510. The fourth

example shown in figure 4-d is the SPN-by-

SNN multiplication, which is Y =

0101.1012×100.112 or in decimal, Y =

(+5.62510)×(-3.2510). The two’s complement

part of this multiplication has a sign bit

|| =”1”, MSB b3||a2 =”1”, LSB a2="1"

and b3="0", all bits of ="0" because

b3="0" and the multiplication bits of

="0" when bj="1" and ="1" when

bj="0". The multiplication result Y =

101101.101112 has the sign negative and its

decimal value is -18.2812510. All the results

of examples in figures 4-a to 4-p are

summarized in Table 1.

The proposed multiplication model is

implemented in FPGA using Xilinx software,

ISE Design Suite 14.7. Two implementation

approaches are carried out by employing

LUTs (LUT6 and LUT5), fast carry logics:

Carry4, MUXCY, and XORCY resources.

The first approach uses a sequential shift-and-

add process or serial-parallel multiplier based

on Algo-1 and the second one is a parallel

multiplier or array multiplier referring to

matrix structure in Figure 4-b. Both are

designed for 8 bits (n = k = 8) signed binary

integer numbers.

64

 Jurnal Ilmiah Teknologi dan Rekayasa Volume 26 No. 1 April 2021

Figure 4. Examples of the proposed (SNN/SPN)-by-(SNN/SPN) multiplication.

Table 1. Results of sixteen examples in figure 4.

Y = (+B) × (+A) Y = (-B) × (-A) Y = (-B) × (+A) Y = (+B) × (-A)
0101.1012 × 011.012

= 010010.010012

5.62510 × 3.2510

= 18.2812510

1010.0112 × 100.112

= 010010.010012

-5.62510 × -3.2510

= 18.2812510

1010.0112 × 011.012

= 101101.101112

-5.625 × 3.2510

= -18.2812510

0101.1012 × 100.112

= 101101.101112

5.625 × -3.2510

= -18.2812510

0101101012×0.101110112

= 010000100.001101112

18110 × 0.7304687510

1010010112×1.010001012

= 010000100.001101112

-18110 × -0.7304687510

1010010112×0.101110112

= 101111011.110010012

-18110 × 0.7304687510

0101101012×1.010001012

= 101111011.110010012

18110 × -0.7304687510

 A 011.01

 × B 0101.101

 0
 .01101

 0.0000

 01.101

 011.01

 0000.0

 01101

 000000

 0 +

 0010010.01001

 A 011.01

 × B 1010.011

 0
 .01101

 0.1101

 00.000

 000.00

 0110.1

 00000

 110010

 1 +

 1101101.10111

 A 0.10111011

 ×B 010110101

 0

 0.10111011

 00.0000000

 010.111011

 0000.00000

 01011.1011

 010111.011

 0000000.00

 01011101.1

 0000000000

 0 +

 0010000100.00110111

 A 0001101

 × B 1010011

 0
 0001101

 0001101

 0000000

 0000000

 0001101

 0000000

 11110010
 1 +

 11110110110111

 A 0001101

 × B 0101101

 0
 0001101

 0000000

 0001101

 0001101

 0000000

 0001101

 00000000

 0 +

 00001001001001

(i) (j)

 A 0.01100110

 × B 0.1101

 0
 001100110

 000000000

 001100110

 001100110

 00.00000000
 0 +

 00.010100101110

(m)

 A 1.10011010

 × B 1.0011

 1
 010011010

 010011010

 100000000

 100000000

 11.01100101

 1 +

 00.010100101110

(n)

 A 0.10111011

 ×B 101001011

 0
 0.10111011

 01.0111011

 000.000000

 0101.11011

 00000.0000

 000000.000

 0101110.11

 00000000.0

 1101000100

 1 +

 1101111011.11001001

(a) (c)

(e) (f)

 A 100.11

 × B 0101.101

 1
 .00011

 1.0000

 00.011

 000.11

 1000.0

 00011

 110000

 0 +

 1101101.10111

(d)

 A 100.11

× B 1010.011

 1
 .00011

 0.0011

 10.000

 100.00

 0001.1

 10000

 111100

 1 +

 0010010.01001

(b)

 A 1.01000101

 ×B 010110101

 1
 0.01000101

 10.0000000

 001.000101

 1000.00000

 00100.0101

 001000.101

 1000000.00

 00100010.1

 1100000000

 0 +

 1101111011.11001001

 A 1.01000101

 ×B 101001011

 1
 0.01000101

 00.1000101

 100.000000

 0010.00101

 10000.0000

 100000.000

 0010001.01

 10000000.0

 1110111010

 1 +

 0010000100.00110111

(g) (h)

 A 1110011

 × B 1010011

 1
 0110011

 0110011

 1000000

 1000000

 0110011

 1000000

 11001100

 1 +

 00001001001001

 A 1110011

 × B 0101101

 1

 0110011

 1000000

 0110011

 0110011

 1000000

 0110011

 11000000
 0 +

 11110110110111

(k) (l)

 A 0.01100110

 × B 1.0011

 0
 001100110

 001100110

 000000000

 000000000

 11.10011001

 1 +

 11.101011010010

(o)

 A 1.10011010

× B 0.1101

 1
 010011010

 100000000

 010011010

 010011010

 11.00000000

 0 +

 11.101011010010

(p)

65

Madenda, Harmanto, New Approach, ...

https://doi.org/10.35760/tr.2021.v26i1.3703

= 132.2148437510 = 132.2148437510 = -132.2148437510 = -132.2148437510

01011012 × 00011012

= 00010010010012

4510 × 1310 = 58510

10100112 × 11100112

= 00010010010012

-4510 × -1310 = 58510

10100112 × 00011012

= 11101101101112

-4510 × 1310 = -58510

01011012 × 11100112

= 11101101101112

4510 × -1310 = -58510

0.11012 × 0.011001102

= 0.0101001011102

0.812510 × 0.398437510

= 0.3237304687510

1.00112 × 1.100110102

= 0.0101001011102

-0.812510 × -0.398437510

= 0.3237304687510

1.00112 × 0.011001102

= 1.1010110100102

-0.812510 × 0.398437510

= -0.3237304687510

0.11012 × 1.10011010 2

= 1.1010110100102

0.812510 × -0.398437510

= -0.3237304687510

Figure 5. RTL Schematic of 8x8 bits signed binary serial-parallel multiplier

Figure 5 shows the FPGA RTL

schematic of 8x8 bits signed binary serial-

parallel multiplier. The FPGA resources used

are presented in table 2: eleven LUT's as a

logical multiplication function; two Carry4s

and sixteen flip-flops as accumulators (adders

and shift registers); eight flip-flops as a

multiplier shift register; and one counter of 3

bits to control the multiplication process. This

multiplier has a maximum combinational path

delay of 1.485 ns, can be operated at a

maximum frequency of 350.262 MHz, and

needs 8 cycles to finish the multiplication

process. Its simulation results, carried out by

applying the values in Figures 4-i to 4-l and in

the third row of table 1, are shown in Figure

6. The multiplication process starts when the

"Reset" signal changes from "1" to "0" and at

the first rising edge clock. At each clock, the

multiplication value continues to change, until

the end process at the eighth clock and is

followed by the "Reset" signal change from

"0" to "1". The products of B×A are given in

decimal and located at the 8th, 16th, 24th and

32th clock respectively for: 4510×1310=58510,

(-4510)×(-1310)=58510, (-4510)×1310=-58510,

and 4510×(-1310)=-58510.

66

 Jurnal Ilmiah Teknologi dan Rekayasa Volume 26 No. 1 April 2021

Figure 6. Simulation results of 8x8 bits signed binary serial-parallel multiplier.

Figure 7. RTL Schematic of 8x8 bits signed binary parallel multiplier.

Figure 8. Simulation results of 8x8 bits signed binary parallel multiplier.

(a)

(b)

67

Madenda, Harmanto, New Approach, ...

https://doi.org/10.35760/tr.2021.v26i1.3703

Table 2. FPGA resources occupied by 8x8 bits Serial-parallel and parallel multipliers.

Multiplier

implementation

approach

Carry

logic.

Carry4

Counter
Occupied

FFs

Occupied

LUTs

Occupied

Slices

Delay

(ns)

Clock

cycle

Maximum

Frequency

(MHz)

Serial-parallel 2 1 (3 bits) 25 19 12 1.485 8 350.262

Parallel 14 - - 57 15 11.233 1 87.719

Figure 7 shows the FPGA RTL schematic of

8x8 bits signed binary parallel multiplier.

This multiplier occupies FPGA resources of

14 Carry4 and 57 LUTs in 15 slices and

performs the multiplication process in one

cycle with a time delay of 11.233 ns. Its

simulation results are given in Figure 8

respectively for: 4510×1310=58510, (-4510)×(-

1310)=58510, (-4510)×1310=-58510, and 4510×(-

1310)=-58510.

CONCLUSION AND FUTURE WORK

New signed binary multiplication has

been proposed and formulated

mathematically. This formula is easily

implemented in software coding with a low

complexity algorithm. Its hardware

implementation in the FPGA is also quite

easy, either in the form of the serial-parallel

multiplier and parallel multiplier. Both are

implemented by optimizing the use of LUT5

and LUT6 for multiplication logic functions,

fast carry logic Carry4, MUXCY, and

XORCY so that fewer FPGA resources are

occupied.

Further research is being carried out on

hardware implementation using several

existing methods: Cascade multiplier,

Wallace tree multiplier, Vedic multiplier, and

booth multiplier.

REFERENCES

[1] Y. Chen, S. Duffner, A. Stoian, J.-Y.

Dufour, A. Baskurta, “Deep and low-

level feature based attribute learning for

person re-identification,” Image Vis.

Comput., vol. 79. pp 25–34, 2018.

[2] X. Cheng, J. Lu, J. Feng, B. Yuan, J.

Zhou, “Scene recognition with

objectness,” Pattern Recognition, vol.

74. pp 474–487, 2018.

[3] J. Zhang, K. Shao, X. Luo, “Small

sample image recognition using

improved Convolutional Neural

Network,” J. Vis. Commun. Image

Represent, vol. 55, pp 640–647, 2018.

[4] S.S. Sarikan, A.M. Ozbayoglu, O. Zilcia,

“Automated vehicle classification with

image processing and computational

intelligence,” Procedia Comput. Sci.,

vol. 114, pp 515–522, 2017.

[5] A. Qayyum, S.M. Anwar, M. Awais, M.

Majid, “Medical image retrieval using

deep convolutional neural network,”

Neurocomputing, vol. 266, pp 8–20,

2017.

68

 Jurnal Ilmiah Teknologi dan Rekayasa Volume 26 No. 1 April 2021

[6] L. Gong, C. Wang, X. Li, H. Chen, X.

Zhou, “MALOC: A fully pipelined

FPGA accelerator for convolutional

neural networks with all layers mapped

on chip,” IEEE Trans. Comput.-Aided

Des. Integr. Circuits Syst, vol. 37, no. 11,

pp 2601–2612, 2018.

[7] N.I. Chervyakov, P.A. Lyakhov, M.V.

Valueva, “Increasing of Convolutional

Neural Network performance using

residue number system,” International

Multi-Conference on Engineering,

Computer and Information Sciences

(SIBIRCON), pp. 135–140, 2017.

[8] A. Shawahna, S.M. Sait, A. El-Maleh,

“FPGA-based accelerators of deep

learning networks for learning and

classification: A review,” IEEE Access,

vol. 7, 7823–7859, 2019.

[9] H. Sim and J. Lee, "A New Stochastic

Computing Multiplier with Application

to Deep Convolutional Neural

Networks", 2017 54th ACM/EDAC/IEEE

Design Automation Conference (DAC),

Jun. 2017.

[10] Juan Renteria-Cedano 1 , Jorge Rivera

2,* , F. Sandoval-Ibarra 1 , Susana

Ortega-Cisneros 1 and Raúl Loo-Yau 1,

SoC Design Based on a FPGA for a

Configurable Neural Network Trained by

Means of an EKF, Electronics 2019, 8,

761; doi:10.3390/electronics8070761

www.mdpi.com/journal/electronics

[11] FPGA Acceleration of Matrix

Multiplication for Neural Networks

(xilinx.com) XAPP1332 (v1.0)

February 27, 2020 www.xilinx.com

Application Note.

[12] Baugh C.R., Wooley B.A., A Two’s

Complement Parallel Array

Multiplication Algorithm. IEEE Trans.

Comput. C-22, pp 1045–1047, 1973.

 [13] PramodiniMohanty, RashmiRanjan,

“An Efficient Baugh Wooley

Architecture for Both Signed &

Unsigned Multiplication”, International

Journal of Computer Science and

Engineering Technology, vol. 3, no. 4,

April 2012.

http://www.mdpi.com/journal/electronics
https://www.xilinx.com/support/documentation/application_notes/xapp1332-neural-networks.pdf
https://www.xilinx.com/support/documentation/application_notes/xapp1332-neural-networks.pdf
https://www.xilinx.com/support/documentation/application_notes/xapp1332-neural-networks.pdf

