COMPARISON OF SENTIMENT CLASSIFICATION MODELS AT SULTAN HASANUDDIN AIRPORT IN MAKASSAR
Universitas Muslim Indonesia
Indonesia
Article Submitted: 17 March 2025
Article Published: 02 May 2025
Abstract
Keywords
References
S. Ainin, A. Feizollah, N. B. Anuar, and N. A. Abdullah, “Sentiment analyses of multilingual tweets on halal tourism,” Tour. Manag. Perspect., vol. 34, no. February, p. 100658, 2020, doi: 10.1016/j.tmp.2020.100658.
L. Zhang, M. Hou, Y. Liu, K. Wang, and H. Yang, “Measuring Beijing’s international air connectivity and suggestions for improvement post COVID-19,” Transp. Policy, vol. 116, no. November 2021, pp. 132–143, 2022, doi: 10.1016/j.tranpol.2021.11.015.
S. Syafrizal, M. Afdal, and R. Novita, “Analisis Sentimen Ulasan Aplikasi PLN Mobile Menggunakan Algoritma Naïve Bayes Classifier dan K-Nearest Neighbor,” MALCOM Indones. J. Mach. Learn. Comput. Sci., vol. 4, no. 1, pp. 10–19, 2023, doi: 10.57152/malcom.v4i1.983.
D. Ramadhansyah, A. Asrofiq, and Y. Yunefri, “Analisis Sentimen Ulasan penumpang maskapai penerbangan di Indonesia… ZONAsi,” J. Sist. Inf., vol. 6, no. 2, pp. 287–297, 2024.
K. Airports, “Kja em,” pp. 103–110, 2023.
K. D. M. Muhammad Hidayat Nasmi, “Jurnal Ilmu Administrasi Publik,” J. Ilmu Adm. Publik, vol. 6, no. 2, pp. 165–175, 2021.
S. Khomsah, “Naive Bayes Classifier Optimization on Sentiment Analysis of Hotel Reviews,” J. Penelit. Pos dan Inform., vol. 10, no. 2, p. 157, 2020, doi: 10.17933/jppi.2020.100206.
S. S. Aljameel et al., “A sentiment analysis approach to predict an individual’s awareness of the precautionary procedures to prevent covid-19 outbreaks in Saudi Arabia,” Int. J. Environ. Res. Public Health, vol. 18, no. 1, pp. 1–12, 2021, doi: 10.3390/ijerph18010218.
Y. Dzyuban et al., “Sentiment Analysis of Weather-Related Tweets from Cities within Hot Climates,” Weather. Clim. Soc., vol. 14, no. 4, pp. 1133–1145, 2022, doi: 10.1175/WCAS-D-21-0159.1.
Rabiatul Adawiyah and Munifah, “Eksplorasi Kapasitas Pengkodean Amplitudo Untuk Model Quantum Machine Learning,” Inform. J. Tek. Inform. dan Multimed., vol. 3, no. 1, pp. 38–58, 2023, doi: 10.51903/informatika.v3i1.232.
A. A. Dhani, T. A. Y. Siswa, and W. J. Pranoto, “Perbaikan Akurasi Random Forest Dengan ANOVA Dan SMOTE Pada Klasifikasi Data Stunting,” Teknika, vol. 13, no. 2, pp. 264–272, 2024, doi: 10.34148/teknika.v13i2.875.
E. Sur and H. Çakır, “Bibliometric analysis of the use of sentiment analysis in the context of service quality,” Yalvaç Akad. Derg., vol. 8, no. 1, pp. 81–104, 2023, doi: 10.57120/yalvac.1258627.
A. H. Salman and W. A. M. Al-Jawher, “Performance Comparison of Support Vector Machines, AdaBoost, and Random Forest for Sentiment Text Analysis and Classification,” J. Port Sci. Res., vol. 7, no. 3, pp. 300–311, 2024, doi: 10.36371/port.2024.3.8.
Viny Gilang Ramadhan and Yuliant Sibaroni, “Sentiment Analysis of Public Opinion Related to Rapid Test Using LDA Method,” J. RESTI (Rekayasa Sist. dan Teknol. Informasi), vol. 5, no. 4, pp. 672–679, 2021, doi: 10.29207/resti.v5i4.3139.
M. O. Odim, A. O. Ogunde, B. O. Oguntunde, and S. A. Phillips, “Exploring the performance characteristics of the naïve bayes classifier in the sentiment analysis of an Airline’s social media data,” Adv. Sci. Technol. Eng. Syst., vol. 5, no. 4, pp. 266–272, 2020, doi: 10.25046/aj050433.
A. A. Syahfitri, M. F. Mulya, P. D. Larasati, and S. Anwar, “Perancangan Sistem Informasi Penerimaan Peserta Didik Baru Menggunakan Codeigniter, Bootstrap Dan Mysql (Studi Kasus: Raudhatul Athfal Az-Zahra),” J. SISKOM-KB (Sistem Komput. dan Kecerdasan Buatan), vol. 6, no. 2, pp. 125–136, 2023, doi: 10.47970/siskom-kb.v6i2.375.
M. B. Ressan and R. F. Hassan, “Naïve-Bayes family for sentiment analysis during COVID-19 pandemic and classification tweets,” Indones. J. Electr. Eng. Comput. Sci., vol. 28, no. 1, pp. 375–383, 2022, doi: 10.11591/ijeecs.v28.i1.pp375-383.
N. Jalal, A. Mehmood, G. S. Choi, and I. Ashraf, “A novel improved random forest for text classification using feature ranking and optimal number of trees,” J. King Saud Univ. - Comput. Inf. Sci., vol. 34, no. 6, pp. 2733–2742, 2022, doi: 10.1016/j.jksuci.2022.03.012.
A. Sagita, A. Faqih, G. Dwilestari, B. Siswoyo, and D. Pratama, “Penerapan Metode Random Forest Dalam Menganalisis Sentimen Pengguna Aplikasi Capcut Di Google Play Store,” JATI (Jurnal Mhs. Tek. Inform., vol. 7, no. 6, pp. 3307–3313, 2024, doi: 10.36040/jati.v7i6.8205.
A. M. Sarhan, H. Ayman, M. Wagdi, B. Ali, A. Adel, and R. Osama, “Integrating machine learning and sentiment analysis in movie recommendation systems,” J. Electr. Syst. Inf. Technol., 2024, doi: 10.1186/s43067-024-00177-7.
E. H. Muktafin and P. Kusrini, “Sentiments analysis of customer satisfaction in public services using K-nearest neighbors algorithm and natural language processing approach,” Telkomnika (Telecommunication Comput. Electron. Control., vol. 19, no. 1, pp. 146–154, 2021, doi: 10.12928/TELKOMNIKA.V19I1.17417.
Hermanto, A. Y. Kuntoro, T. Asra, E. B. Pratama, L. Effendi, and R. Ocanitra, “Gojek and Grab User Sentiment Analysis on Google Play Using Naive Bayes Algorithm and Support Vector Machine Based Smote Technique,” J. Phys. Conf. Ser., vol. 1641, no. 1, 2020, doi: 10.1088/1742-6596/1641/1/012102.
R. S. Y. Zebua, Fenomena artificial intelleigence, no. June. 2023.