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Abstract 

 
Banks must be able to manage all of banking risk; one of them is operational risk. Banks 

manage operational risk by calculates estimating operational risk which is known as the 

economic capital (EC). Loss Distribution Approach (LDA) is a popular method to 

estimate economic capital(EC).This paper propose Gaussian Mixture Model(GMM) for 

severity distribution estimation of  loss distribution approach(LDA). The result on this 

research is the value at EC of LDA method using GMM is smaller    2 % - 2, 8 % than the 

value at EC of LDA using existing distribution model. 
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INTRODUCTION 

 

Bank must be able to manage all of 

banking risk, one of them is operational 

risk. A common industry definition of 

Operational Risk is the risk of direct or 

indirect loss resulting from inadequate or 

failed internal processes, people or 

systems, or from external events”, 

Frachot[4]. Bank manage operational risk 

by calculate estimation of operational 

risks which is known as the economic 

capital (EC). 

Economic Capital (EC) is the 

amount of capital that an organization 

must set aside to offset potential losses. 

There are three approach to calculate 

Economic Capital based on Basel Accord 

II. That are Basic Indicator Approach 

(BIA), Standardized Approach (SA), dan 

Advanced Measurement Approach 

(AMA), (Frachot, 2001). The capital 

charge using BIA dan SA is calculated by 

fixed percentage. The capital charge 

using AMA, bank could calculated EC 

based on their internal loss data. Internal 

data is used as an input to compute the 

probability distribution of loss. The 

popular approach of AMA is Loss 

Distribution Approuch(LDA). 

Mathematics definition , the total of 

annual operational Losses : 

 

𝑍(𝑡) = ∑ 𝑋(𝑖)(𝑡)

𝑁(𝑡)

𝑖

                                         (1) 

 

Where: 

N (t)  : Random Variable of the number 

events losses in 1 year. 

Distribution of N (t) is called frecuency 

Distribution 

 

X(i)(t) : Random Variable of the amount 

losses for the i-th event. 
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Distribution of X(i)(t) is called Severity 

Distribution 

 

Z(t)   : Annual losses, is summarize of the 

loss X(i)(t)  in 1 year. 

Distribution of  Z(t) is called Aggre-

gation Distribution 

 

In LDA method, loss severity 

distribution (severity distribution) and 

loss frequency distribution (frequency 

distribution) must be estimated and then 

aggregate distribution is formed from 

both of them. Through LDA method, the 

value of EC can be gotten from Value at 

Risk (VaR) in aggregate distribution with 

the level of confidence reaches 99,9%. 

Aggregate distribution of the random 

variable Z can not expressed analytically. 

So that the numerical approach is needed 

to determine the distribution. Several 

well-known numerical method that could 

be used are the Monte Carlo method, the 

Fast Fourier Transform, and Panjer 

Recursion. In the study used the most 

easily implemented, namely the Monte 

Carlo method (Shevchenko,2009). That 

why our research would used its method. 

One of problems on LDA is severity 

distribution estimation that used a model 

on particular distribution cannot describe 

a data well through. Then severity 

distribution estimation based on data is 

used to solved this problem.  

 

RESEARCH METHOD 

 

One of methods that estimate 

probability distribution function based on 

data is Gaussian Mixture Model (GMM). 

GMM is parametric method that estimate 

probability density of random variable. 

Probability density of GMM is a linear 

combination of  several Gaussian 

distribution, that is : 

𝑝(𝑥) = ∑ 𝜋𝑘𝒩(𝑥|𝝁𝒌, 𝚺𝒌)

𝐾

𝑘=1

                   (2) 

 

Where: 

𝑝(𝑥): probability of x 

 K    : the number of  gaussian 

distribution that is used 

𝜋𝑘   : k-th mixing coefisien, ∑ πkk = 1 

dan 0 ≤ πk ≤ 1. 

𝒩(𝑥|𝝁𝒌, 𝛴𝑘)  : Normal /Gaussian 

Distribution k-th, where k=1,2,…,  

𝒩(𝒙|𝝁𝒌, 𝛴𝑘) =
1

√(2𝜋|𝜮𝒌|)
exp {−

1

2
(𝒙

− 𝝁𝒌)TΣk
−1(𝒙 − 𝝁𝒌)} 

 

Each gaussian distribution 

𝒩(𝑥|𝜇𝑘, Σ𝑘) is called component of 

mixture, and each componet have 

different mean 𝝁𝒌 dan covarian 𝚺𝒌. 

GMM is formed by parameter 𝝅,  , dan 

𝚺, where 𝝅 = (𝝅𝟏, , 𝝅𝟐, … , 𝝅𝒌), 𝝁 =
(𝝁𝟏, 𝝁𝟐, … , 𝝁𝒌) dan 𝚺 = (𝚺𝟏, 𝚺𝟐 … . , 𝚺𝐤 ). 

Parameter 𝜋𝑘 is called mixing coefisient. 

Ilustration of GMM show in Bishop, C. 

M.[1]. 

The question is “Which is a better K 

for GMM  (K=?)”. Number of component 

in GMM could be selected using model 

selection. There are two popular model 

selection that is used, Akaike Information 

Criterion(AIC) and Bayesian Information 

Criterion(BIC). Due to the selection 

model, BIC has proven consistent in 

estimating the density function of the 

mixture model, Dempster (1977),. BIC 

also proved consistent in choosing the 

number of components in the mixture 

model (Claeskens and Hjort, 2011). 

Those are the reason of choosing BIC in 

this study. 

The best model using BIC is taken 

by giving a score to each model and then 

choose the model that has the smallest 

score. Here is the calculation of scores on 

the model BIC, Claeskens and Hjort[2] : 

BIC = -2ln (L (θ)) + dim (θ) ln (n)  

where:  

L (θ) : the value of the likelihood function 

model with the estimated parameters θ 

n : number of data. 
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RESULT 

 

The Software of simulations use 

programming language Python. The 

simulation in this paper calculate the 

value of EC using LDA in which severity 

distribution is estimated by GMM. First 

step on simulating, we generated data toy 

for operational risk(Assumed operational 

risk real data), with those data then we 

estimate frequency distribution with a 

Poisson distribution and estimate severity 

distribution using k-GMM(Selection 

model for k using BIC). Next, the 

simulations to be done to generate more 

data for LDA which appropriate with 

operasional risk data. The result of 

simulation on LDA is EC value. Then to 

see how GMM works on LDA, EC value 

in which GMM applied compare with EC 

value in which other distribution model 

applied.  

Data are generate in 3 group of data: 

3 years, 5 years, and 10 years. histogram 

of risk data  is below figure 1. 

First, estimating frecuency distri-

bution, Frequency of losses per year in 

operational risk are the values for the 

random variable N, which is the number 

of frequency of losses incurred within one 

year. The distribution of this random 

variable N can be estimated with a 

Poisson distribution, this is because the 

number of frequency of losses incurred in 

a particular year does not depend on the 

number of frequencies in other years. 

Parameters on the Poisson distribution is 

the mean . For data 3 years:  = 165, for 

data 5 years:  = 60, and for 10 years:  = 

54. Frequency distribution that is formed 

can be seen in the following figure 2.

 

 

 
 

figure 1. (a) Histogram of data risk data of 3 years (b) Histogram of risk data of 5 years and (b) 

Histogram of risk data of 10 years 
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figure 2. Frecuency Distribution 

Estimating severity distribution 

using GMM,  GMM is a parametric 

models, so the thing to do is to determine 

the parameters-parameters in the GMM. 

Simulations performed on three groups of 

data, 3 years, 5 years and 10 years. 

Component K in GMM for each of data 

determined in advance by the selection 

model BIC. BIC methods are iterative 

methods in determining the optimal 

model by scoring in each model of 

different components k, optimal model is 

a model that has the smallest scoring with 

K smallest components. At 3 years of 

data, the method of BIC produce optimal 

k= 2. At 5 years of data, the method of 

BIC produce optimal component k= 4. At 

5 years of data, the method of BIC 

produce optimal component K = 3. 

 

 
Table 1. Parameter-parameter  of GMM using data 3 years, 5 years dan 10 years 

Data 3 years 

Component Coefisien mixing Mean Varians 

1 0.4055 66436.9129 3.23732875e+08 

2 0.5945 32211.7052 1.34890412e+08 

Data 5 years 

Component Coefisien mixing Mean Varians 

1 0.1511 67914.4881 1.13370445e+08 

2 0.5348 36794.2922 1.02323533e+08 

3 0.2511 14826.8864 1.00002549e+07 

4 0.0630 92860.0602 5.95976389e+06 

Data 10 years 

Component Coefisien mixing Mean Varians 

1 0.4041 54793.2608 2.07430867e+08 

2 0.2056 16073.4845 1.20531853e+07 

3 0.3903 32175.9726 8.76020500e+07 
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figure 3. Severity Distribution using GMM with K component choosing by BIC 

 

The following is ilustration of GMM for 

data 10 years with 3 component gaussian 

where the each parameter on table 1. 

𝑝(𝑥) = ∑ 𝜋𝑘𝒩(𝑥|𝜇𝑘, Σ𝑘)

3

𝑘=1

 

= 𝜋1𝒩(𝑥|𝜇1, Σ1) + 𝜋2𝒩(𝑥|𝜇2, Σ2) + 𝜋3𝒩(𝑥|𝜇3, Σ3) 

𝑝(𝑥) = 0.4041𝒩(𝑥|54793.2608,2.07430867e + 08)  

+0.2056𝒩(𝑥|16073.4845,1.20531853e + 07)  
+0.3903𝒩(𝑥|32175.9726,8.76020500e + 07)  

 

The graphic of severity distribution 

using GMM are on figure 3. The red 

curve in Figure 3 are curve of GMM for 

each data. Figure 3 also saw us that the 

curve is very good in estimating the data, 

visible from the ridge on the histogram 

followed properly by the red curve. 

How k component on GMM esti-

mate the severity distribution, for k = 

1,2,3,4, and k = 10. This estimation was 

performed on three groups of data, 3 

years, 5 years of data, and the data 10 

years. This estimating was conducted to 

visually whether the selection of the best 

models with BIC able approximating data 

well and compare it with other GMM 

models. The following Figure 4, shows 

the probability density function models 

GMM for k = 1,2,3,4 and 10. For k = 10, 

appears to lack of smoothness curve pdf, 

pdf increasingly tapered curve. Moreover, 

it appears the estimated GMM with a 

large k (k = 10) is not too different from 

the estimated optimal GMM with K 

obtained by BIC . 

 

figure 4. Severity Distribution 
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Figure 5. Comparing severity distribution using GMM (red curve) and Log-Normal(blue curve) 

 

Visually to data 3 years, the best 

model looks to GMM with 3 components 

(yellow curve), GMM with 2 component 

is still not good approximation. This is in 

contrast with the best GMM models 

produced by the method of BIC which 2 

component is an optimal component. 

Data 5 years, the best model seems to 

GMM 4 component (blue curve). 10 

years of data, the best model seems to 

GMM 3 component (yellow curve). Data 

for 5-year and 10 year, the selection of 

the best models with visualization are 

same as with the selection of the best 

model with BIC. How ever best model 

GMM for each data can be done visually 

in the case of data one dimension as 

above. If  data have large dimension, it 

would be difficult to portray the data 

graphically so the selection of com-

ponents visually difficult. In addition, the 

selection of the optimum component in a 

visual way can not be justified because 

that are subjective. 

Red curve in Figure 5 shows for 3 

group of data used in this study, pdf using 

GMM better in describing the research 

data because it can estimate the local 

areas, while pdf model of log-normal can 

not do it. 

The simulation is calculating EC 

values. As we know that EC  obtained 

from the calculation of VaR on Aggregate 

distribution ( formed from the severity 

distribution and frequency distribution) 

with a confidence level of 99.9%. 

Aggregate distribution calculated nume-

rically using the Monte Carlo method. 

The purpose of this simulation to 

determine how much difference the value 

of EC produced by LDA using GMM and 

EC produced by LDA using the Log-

Normal. The number of samples used 

were 1.10, 102, 103, 104, 105, and 106. The 

simulation was performed 10 times for 

each sample number. Results of the 

simulation calculations are presented in 

table 2. 

 
Tabel 2.  EC using GMM and Log-Normal for number of sampel 106 

Method Economic Capital (EC)  

Data 3 years Data 5 years Data 10 years 

GMM 9.729.364,21 3.557.837,80 3.089.042,94 

Log-Normal 9.901.079.80 3.632.659.70 3.178.200.00 
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Table 2 shows that using GMM on 

severity distribution of LDA gives a 

lower EC value than the Log-Normal. EC 

value by GMM of  3 group of data 

provide EC value 2% lower than the 

value of the EC with the Log-Normal.  

 

CONCLUSIONS 

 

The result on this research is 

estimation of severity distribution through 

GMM is better than known distribution 

model in describing the data. The value at 

EC of LDA method using GMM is 

smaller 2 % - 2,8 % than the value at EC 

of LDA using existing distribution model. 

Then if bank use this method, they could 

have capital efficiency. 
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