ANALISIS SENTIMEN PADA ULASAN APLIKASI TOKOCRYPTO DENGAN MENGGUNAKAN METODE SUPPORT VECTOR MACHINE (SVM) PADA GOOGLE PLAY
Universitas Gunadarma
Indonesia
Universitas Gunadarma
Indonesia
Article Submitted: 14 November 2024
Article Published: 14 December 2024
Abstract
Cryptocurrency is a virtual currency that is used as an alternative currency, where the currency is generated and traded through a cryptographic process. One of the Cryptocurrency digital currency applications is Tokocrypto, a legal means of payment using only rupiah. The sentimen classification method in this study uses Support Vector Machine (SVM) and the parameters are tested extensively by applying the K-fold cross validation technique to find the optimal configuration. The initial stages in this sentimen analysis are the data collection stage, pre-processing, which consists of case folding & cleaning, filtering (stopword removal), tokenizing, changing negated words, normalization and stemming. After that, data labeling and scoring are carried out using the Lexicon Based method. The dataset from pre-processing and Lexicon Based is used for the classification process using SVM. The best evaluation results were obtained with an AUC (Area Under the Curve) of 90.50% and an Accuracy of 85.80% with Linear kernel and parameter C = 1 and using K-fold cross validation value of 10. Visualization of the results of the sentimen analysis of the Tokocrypto Application is displayed in a bar chart and word cloud.
Keywords
References
Kementerian Perdagangan Republik Indonesia, “Bappebti: Perdagangan Kripto jadi Strategi Percepatan Ekonomi Digital”, April, 2024. [Online].Available:https://www.kemendag.go.id/berita/pojok-media/bappebti-perdagangan-kripto-jadi-strategi-percepatan-ekonomi-digital. [Accessed Agustus. 12, 2024].
Tokocrypto, “Kenalan Dulu dengan Tokocrypto”. [Online]. Available: https://support.tokocrypto.com/hc/id/articles/17502415349389-Kenalan-Dulu-dengan-Tokocrypto. [Accessed Agustus. 30, 2024].
Ladita, “Analisis Penerapan Aplikasi Android Tokocrypto Menggunakan Pendekatan Design Thinking Dibantu Dengan Platform Design Toolkit V.2,” Anal. Penerapan Apl. Android Tokocrypto Menggunakan Pendekatan Des. Think. Dibantu Dengan Platf. Des. Toolkit V.2, pp. 1–132, 2020.
Aftab, F., Bazai, S.U., Marjan, S., Baloch, L., Aslam, S., Amphawan, A., Neo, T.-K., “A Comprehensive Survey on Sentimen Analysis Techniques”. International Journal of Technology. Volume 14(6), pp. 1288-1298. 2023.
Sindhu, S. Kumar and A. Noliya, "A Review on Sentimen Analysis using Machine Learning," 2023 International Conference on Innovative Data Communication Technologies and Application (ICIDCA), Uttarakhand, India, pp. 138-142, doi: 10.1109/ICIDCA56705.2023.10099665. 2023.
Monika, P., C. Kulkarni, N. Harish Kumar, S. Shruthi, and V. Vani. “Machine Learning Approaches for SentimenAnalysis: ASurvey”. International Journal of Health Sciences, vol. 6, no. S4, Apr., pp. 1286-00,2022.
doi:10.53730/ijhs.v6nS4.6119.
Moraes, Rodrigo & Valiati, Joao & Gavião Neto, Wilson. Document-level sentimen classification: An empirical comparison between SVM and ANN. Expert Systems with Applications. 40. 621–633. 2013. 10.1016/j.eswa.2012.07.059.
Siti Aisah, B. Irawan, and T. Suprapti, “Algoritma Support Vector Machine (Svm) Untuk Analisis Sentimen Ulasan Aplikasi Al Qur’an Digital”, JATI (Jurnal Mhs. Tek. Inform), vol. 7, no. 6, pp. 3759–3765, 2024. doi: 10.36040/jati.v7i6.8263.
Isnain, Auliya Rahman et al. “Sentimen Analisis Publik Terhadap Kebijakan Lockdown Pemerintah Jakarta Menggunakan Algoritma Svm”. Jurnal Data Mining dan Sistem Informasi, 2021.
Artanto, Fenilinas Adi, “Support Vector Machine Berbasis Particle Swarm Optimization Pada Analisis Sentimen Anggota KPPS.” JURNAL FASILKOM14 (1). LPPM Universitas Muhammadiyah Riau: 75–79. 2024. doi:10.37859/jf.v14i1.6795.
Darwis, Dedi & Pratiwi, Eka & Pasaribu, A. ‘Penerapan Algoritma Svm Untuk Analisis Sentimen Pada Data Twitter Komisi Pemberantasan Korupsi Republik Indonesia’. Edutic - Scientific Journal of Informatics Education. Vol. 7.No.1.2020.10.21107/edutic.v7i1.8779
Saputro, M., & Alamsyah, A. “Comparison of Naive Bayes Classifier and K-Nearest Neighbor Algorithms with Information Gain and Adaptive Boosting for Sentimen Analysis of Spotify App Reviews”. Recursive Journal of Informatics, 2(1), 37-44. 2024.https://doi.org/10.15294/rji.v2i1.68551
Diwandanu, M.T., & Wisudawati, L.M. “Analisis Sentimen Terhadap Twit Maxim Pada Twitter Menggunakan R Programming Dan K Nearest Neighbors”. Jurnal Ilmiah Informatika Komputer.2023.DOI: http://dx.doi.org/10.35760/ik.2023.v28i1.7909
Pamungkas, Adji Surya & Cahyono, N. “Analisis Sentimen Review ChatGPT di Play Store menggunakan Support Vector Machine dan K-Nearest Neighbor”. Edumatic: Jurnal Pendidikan Informatika. Vol. 8 No. 1, Juni, Hal. 1-10, 2024. DOI:
/edumatic.v8i1.24114
Aditiya, U. Enri, and I. Maulana, “Analisis Sentimen Ulasan Pengguna Aplikasi Myim3 Pada Situs Google Play Menggunakan Support Vector Machine,” JURIKOM (Jurnal Ris. Komputer), vol. 9, no. 4, p. 1020, Aug. 2022. doi: 10.30865/jurikom.v9i4.4673.
A. Buntoro, “Analisis sentimen calon gubernur DKI Jakarta 2017 di Twitter,” Integer J., vol. 2, no. 1, pp. 32–41, 2017, [Online]. Available: https://t.co/jrvaMsgBdH.
Hutto, C., & Gilbert, E. VADER: A Parsimonious Rule-Based Model for Sentimen Analysis of Social Media Text. Proceedings of the International AAAI Conference on Web and Social Media, 8(1), 216-225. 2014. https://doi.org/10.1609/icwsm.v8i1.14550
Asri, Yessy & Suliyanti, Widya & Kuswardani, Dwina & Fajri, Muhamad. “Pelabelan Otomatis Lexicon Vader dan Klasifikasi Naive Bayes dalam menganalisis sentimen data ulasan PLN Mobile: Analisis Sentimen”. PETIR. 15. 264-275. 2022. 10.33322/petir.v15i2.1733.
Berrar, Daniel. Cross-Validation. 2018. 10.1016/B978-0-12-809633-8.20349-X.