Majalah Ekonomi dan Komputer No.3 Tahun XIV-2006

e ———

OPTION PRICING SIMULATION USING C++

Argamaya

Ji. Jend. Sudirman Jakarta Pusal

Email: argamaya@ielkom. rel

ABSTRACT

Faculty of Economics, Atmajaya Universily

In the field of financial mathemsafics, many problems, for mstance the problem of finding the
arbilrage-free value of a particular dernivalive securily, boll down to the computation of a particular
integral. In many cases these integrals can be valued analvtically, and in still more cases they can be
valued using numerical integration. However when the number of dimensions (or degrees of freedom) in
the probler is large, numerical integration methods become intraclable. In these cases it is common fo
resart lo the more widely applicable Monte Carfo method lo soive the problem. For large dimension
inlegrals as can very often happen in financial problems, Monle Carlo methods converge to the solubion
maore quickly than numerncal integration methods, The advantage of Mante Cardo methods increases as
the dimension of the problem gels larger. This arlicle inlroduces Monie Caro techniques for opfion
pricing, Mt alsc touches on the use of so-calied "varance reduction technigue™ This method can produce
enormous speed-yps compared with standard Monte Carlo,

Keywords: Monte Carlo, financial problems, variance reduction technigue.

INTRODUCTION

The pricing of options and
related instruments has been a
major breakthrough for the use
of financial theory in practical
application. Since the original
papers of Black and Scholes
(1973) and Merton (1973),
there has besn a wesalth of
practical and theorelical appli-
cations. In this paper we will
discuss ways of calculating the
price of an option in the setting
discussed in these onginal pa-

pers. The discussion

Is naot
completed, it nesds to be sup-

plemented by one of the stan-
dard textbooks, like Hull (2005).

We consider using Monte
Carlo methods to estimate the
price of an European option,
and let us first consider the
case of the "usual' European
Call, which Is priced by the
Black Scholes equation Since
there is already a closed form
golution for this case, it [s not
really necessary to use simula-
tions, but we use the case of
the standard call for illustrative
purposes

At maturity, a call option is

worth

Cp = m:::af_ﬂ..‘i; — X}

At an earller date 1, the option
value will be the expected
present valus of this,

¢, = E[PV(max(0,5, - X))]

Now, an important simplifying
feature of option pricing is the
nsk

neutral which

implies that we can ftreat the

resuit”

(suitably transformed) problem
as the decision of a risk neutral
decision maker, if we also
modify the expected return of
the underlying asset such that

this 2arns the risk free rate

s =e " E [max(0,S, _,)]

[45

Argamaya, Option Pricing. . ..

where E'[s] is a transfor-
mation of the orginal expect-
ation. One way to estimate the
value of the call is to simulate a
large number of sample values
of S;according to the assumed
and find the
estimated call price as the ave-

price process,

rage of the simulated values. By
appealing to a law of large num-
bers, this average will converge
fo the actual call value, where

the rate of convergence will

dinclude <amath>
UEINE NAMEe EpAace std,
finelude "poredist. b

depend on how many simu-
lations we perform.

Simulating Lognormally Distri-
buted Random Variables
Lognormal

simulated as follows. Let ¥ be

variables are

normally distributed with mean
zero and vanance one. If 5
follows a lognommal distnbution,
then the one-period-later price

3,.,, Is simulated as

[r ta’]-Ji

SI wl = ‘gn"‘,

or more generally, if the
current time s ¢ and terminal
dateis T, with a time betwesn ¢

and T of (T-1),

I I .0
r-—a IF~tlooeT-4£

S =5 EV' 2
Simulation of lognormal

random variables is illustrated by
listing 1.

double simulate lognormel random_veriable{const doublek § // current ralue of tarable
const doublel ¢, // mierest rute

const doublef: sigma, // wiatibily

const doublef: time) { // ttme to final date

double R = {r — 0.5 * pow(signa2)) *time;
double S0 = sigma * sqrk(bime);

return S * exp(R + 5D * rendom_normal()),

k.

Listing 1: Simulating a lognormally distributed random variable

Pricing Of European Call

Options

For the purposes of doing
the Monte Carlo estimation of
the price if an European call

¢, ="V E[max(0,S, - X)]

146

R

note that here one merely need

to simulate the terminal price of
the underlying, S, . the price of
the underlying at any time
between 1 and T is not relevant
for pricing We proceed by
simulating lognormally distri-

buted random variables, which

gives us a set of observations of
the terminal price S,. If we let
St 1597 1097 350--, 9, , denote the
n simulated values, we waiil
estimate £ [max(0.5, - X)] as

the average of option payoffs at

- — i —— e

P - wrw W

maturity, discounted at the risk
free rate

Majalah Ekonomi dan Komputer No.3 Tahun XIV-2006

e —

Sinclode <cmath> // stendand mathematical func tions
finclnde <elgcrithm > /i define the mﬁ.t{_j funichion

gsing namospnce std;

B F)
& =N S max(0,8,, - X)|
L | mentation of

Listing 2 shows the imple-
a Monte Carlo
estimation of an European call

option

finclnde *moradist.h* // defimction of rondom number generoior

doubla

option _price_call_suropean.simulatcd{ const doublel 8, // price of underlying
conzst doublof X, (,-"{,r’r £ reTClIe price
const double& l,r":fr risk free tterest rate
conzt doublef sgna // welablity of underlying
const doubled: Hme, ,r" tume to maturity {J'I!.'I'I. y:an‘]
const intk no_dms){ // number of nmulations
double B = (r — 0.5 * pow(sizma,2)) “time;
double SD = sigma * sqrif{tinc);
double sum_payefis = 0.0;
for (it n=1; a<=oo_simx o) {
double S.T = 5* exp{R + 5D * candom_bormel{));
atn_payoffs += max{00, S.T-X);

X

raturn cepl{—r*Hme

} * (3 paycfa/double{ss sims));

Listing 2: European Call option priced by simulation

Hedge Parameters

It is of course, just as in the
standard case, desirable to
estimate hedge parameters as
well as option prices. We will
show how one can find an
estimate of the option delta, the
first derivative of the call price

with respect to the underlying

security: A= % . To understand
Y

how one goes about estimating
this, let us recall that the first

derivative of a function f is

defined as the limit

F)=tim L)1)

h—0 h

Thinking of f(S) as the

option price formula

¢, = f(S:X,r,0,(T1)), we see
that we can evaluate the option
price at two different values of

the underlying, Sand S+g¢,

where g is a small quantity, and
estimate the cption delta as

A5 +0)-15)
q

In the case of Monte Carlo
estimation, it is very important
that this Is done by using the
same sequence of random
variables to estimate the two
option prices with prices of the

underlying 5 and

&+ q.
Listing3 implements this est-
mation of the option delta.

Cne can estimate other
hedge parameters n a simular

way

Argamaya, Option Pricing....

ginclude <cmath> // stendard mathcmotics! fanctions

finclonde <algoeithin> // definc the maz(] fonction

UEiNE namespace ztd,

fincludo "sormdist.h® // definition of random number gencrgior

double cptHon_price_delba cell curopenn_simulated{const doublef: 5

const doublef X,
const doublei ¢
const doublo sigma
conat doobled: time,
const intf oo _sims){
w{sgme 2)) time
time)

doubleR =(r—-0D5*
double SI! = signa *
double sum_paiwodis = 00;
double sum_pewafls q = 0.0;
double q = S*0.01;
for {int 0=, n<=po.flms nt++) {
double Z = random_nermalf),
doubla 8_.T = 8* exp(R + SD * Z),
stim.payoffs += max(0.0, S_T-X);
double 8.T_q = (S+q)* =xp(R + 8D * Z},
sum._paycffs_ q += max(0.0, S.T_q—X),

d,nublﬂ ¢ = caxp{ —t*dme) * [=nm_payoffa/o sirm);
double c.q = cxp{—r*time) * (sum_paycffa_q/no_sima);

returno (cg—<j/g

|

Listing 3: Estimate Delta of European Call option priced by Monte Carlo

More General Payoffs. Func-
tion Prototypes

The above shows the case
for a call option. If we want to
price other types of options, with
different payoffs we could write
similar routines for every pos-
sible case. But this would be
wasteful, instead a bit of thought
allows us to write option valu-
ations for any kind of option

|48

whose payoff depend on the
underlying at
maturity, only. Let us now move

value of the

toward a generic routine for
pricing denvatives with Monie
Carlo. This relies on the ability of
C ™" to write subroutines which
one call with function prototypes,
e that in the call to the sub-
routine/function one provides a

function instead of a variable

Consider pricing of standard
European put and call options.
At maturity each option only
depend on the value of the
underlying S.and the exercise
price X through the relations
Co= max{.S"?. X,ﬂ]
P, = max(X = 5,.0)
Listing 4 shows twa C™ func-

tions which calculates this.

-

—

%

Majalah Ekonomi dan Komputer No. .3 Tahun XIV-20086

e ——

finclodo <algesithm>
Using namoTpace std;

donble payefl_cell{const doublek price, con=t doublef: X}{
return max(0 0 price—X};

double payoff_put (const doubled price, const doublei: X) {
return mnm{ﬂ [],}(—pﬂ:.c]l;

}

The interesting part comes
when one realizes one can wriie

a generic simulation routine to

dinclode <omath>
UEinE namespace atd;
dinclude "fin_racipas.b"

doubla

Listing 4: Payoff call and put options

which one provide one of these depends on the price of the
functions, or some other function underlying and some constant
describing a payoff which only Listing 5 shows how this is done.

dmﬂaﬂw-pti::-:imuln.h:_uuop:m..upﬁnh,.gm:tinimn!t doublef: S, // price of underiying

double sum._peyvofia—0;

mnst doubled X, // used by user provided payoff function
oonst double ¢, // rsk free miterest roie

conzt doubled sigms, // wlatlity

conzt doubled: Hime, // time o matursly

double peyefi{const doublel: pric=, eonst doublol X)),
// wser provided fanction

const otk oo _sims) { // numbler of simmlsions to ron

for (iot 0=0, s<po o nd+4) {
double S.T = slmulate lognormel _randotn vasiable({S r sigme Hmc),

h

Note the presence of the line
double payofficonst doubled
price, const double& X), in the
) subroutine call. When this

sum_payoffs += paycH(5_T X),

return exp{—r*time) * {sum_paycfis/no_sims);

Listing 5: Generic simulation pricing

function is called, the caling Listing6é shows a complete
program will need to provide a example of how this is done.
function to put there, such as the

Black Scholes example above

Argamaya, Option Pricing....

#inclode "fin recipas.b”
#includo <elgocithm >
dinclude <iostream>
using nAMospace std;

double peycff_coropean call{conat doublef: ice, const doublei: X){ return max{0 Dpde=—X], }.
double peycfi_curopeas put (const doublel pricc, const doublef X} { return max(0.0X—peics]; |

int mein{){

double S = 100.0;
double X = 100.0;
double ¢ =01

double =igma = 025,
double time = 1.0
it pooaimas = 50000;

couk << "BHlachk Scholes call cption prica ="
< npticun_prIc.c.cnll.hlndi-s;hnlm{s,xr,ﬁmu,ﬂmj

<< endl;

cout << "Bimulated call option prica ="
<< desivabive price.simulabe_curopean_opHob.generie8 X r sizma time payoff .ctiropean cell no_sima)

<< endl:

cottk << "Blach Scholed put option prica =
<< optioz_price_put_bladk_scholedS X c signa time)

<< endl,;

cout << "Simnlstad put optien prica="
< duiwh:,ptiminmi;&,mmw&un_ﬂ:ﬁa{ﬁix;igm;ﬁmqpqcﬂ.ﬂ:mwt i)

<< endl;

Listing 6: Simulating Black Scholes values using the generic routine

Running the program in list-
ing 6 results in the output:

Simulated call option price =
14,995

Black Scholes call
price = 14 9758

Simulated put option price =
5.5599

Black Scholes put option price
= 545954
As we see even with as many
as 50,000 simulations, the option

option

prices estimated using Monte
Carlo still differs substantially
from the “true" values.

150)

Improving The Efficiency In
Simulation

There are a number of ways
of “improving" the implement-
ation of Monte Carlo estimation
such that the estimate is closer
to the true value. Two Variance
Reduction techniques, the me-
thod of Antithetic Variates and
the method of Control Vanates
will be discussed. More infor-
mation about the general use of
vanance reduction technmiques
can be found in the textbook by

Law and Kelton (2000).

Control variates

One is the method of control
variates, The idea is simple.
When one generates the set of
terminal values of the underlying
security, one can value several
derivatives using the same set of
terminal values. What if one of
the derivatives we value using
the terminal values is one which
we have an analytical solution
to? For example. suppose we
calculate the value of an at the
money European call option
using both the (analytical) Black

Majalah Ekonomi dan Komputer No.3 Tahun XIV-2006

Scholes formula and Monte
Carlo simulation. if it tums out
that the Monte Carlo estimate
overvalues the option price. we
think that this will also be the

Euro-pean call as the control
vanate. Using the same set of

simulated terminal valuessS,

we estimate the two oplions

using Monte Carlo as:
case for other derivatives valued

using the same set of simulated p= E_'{T_f?(zm“{ﬂ':)f -8,

terminal

values, We therefore

move the estimate of the price of
the derivative of interest down-

wards. We calculate tﬁe Black Scholes

Thus, suppose we want 10 .0 of the call & . and caleu-

value an European put and we

late p”. the estimate of the pu
use the price of an at the money P: imate o put

tinclude <cmaths

using namespace skd,

#include “fin_facipes.h”

tinclude "payoEf blach_zcholas_cmse.h"

double

{".‘ = t’_:” _rj{in]ﬁx{.ﬂ_‘qr! e -'T}]
=i

price with a control wvanate

adjustment, as follows

P =p+le"-¢)

One can use other den-
vatives than the at-the-money
call as the control variate, the
only limitation being that it has a
tractable analytical solution.

Listing 7 shows the imple-
mentation of a Monte Carlo esti-
mation using an at-the-money
European call as the control

vanate.

desivetive_price_simulabe_ciropcan option_genesic with coctrol verizt={const doublef: 5
const dooblef: X

conit doubleé «

const dooblef: sgna
const doublol: Him=
double poyofi{const douvblei: 5
canst doublef X},
conet intf no_sims) {
douobls c_ s = opton_pricc_cell black schal=(S S r sigmatime), // price an at the money Black Scholes call

double sum._ paysifs=0;
double stum_payels. ka=0
for (int h=0, n<bo.sima, n++:] {

double S.T= simulate lognormal reodom vesdable{S £ aigma, Hme),

aum_payoffa += payeff(S_T X},

anm payoffa s += pn;rc:ﬂ'_:ail{ S,,T_E], _,r‘:r‘r strmulate at the money Black Scholes prize

I'.'E.I!IJHH csim = c:up{—l:"‘!im:] * {(sum_payofis/no_sima);
dooble c_bs.sim = cap{—r*time) * (sum_paycfis_bs/no_sims),
esim 4= (e bo—c s =m},

return c_=sm,

e

Listing 7: Generic with control vaniate

Argamaya, Option Pricing. ...

Antithetic variates,

An alternative to using con-
trol variates is to consider the
method of antithefic wvarates.
The idea behind this is that
Monte Carlo works best if the
simulated variables are "spread"

out as closely as possible to the

finclude "fin_raecipa=.h"
#include "sormdizt. k"
H#inclode <oanath>

uEingE namespacs std;

doubla

true distribution. Here we are
simulating unit normal random
variables. One property of the
normal 15 that it is symmetric
around zero, and the median
valug 15 zero, Why dont we
enforce this in the simulated

terminal values? An easy way to

do this is to first simulate a unit
random normal vanable?, and
then wuse both Zand -Zto
generate the lognormal random
vanables. Listing 8 shows the

implemeniation of this idea.

detivative_pricc_smulatc_curopean_opbon-gencric with_ antithetic varint={const doubled: 5,

const doubles: X,

const doublef: ¢,

const doublei: sigma,

const doublek: tine,

double peyofi{const double& 5,

const doublaf: X,

const inté oo sima) {

donble R = {r — 0.5 * pow(sigma 2) :]*Em:;
double 5D = sigma * sqri(tims=);

double sun_payef==0;

for (int n=0; h<ho_dimas; ht+4) {
double x=random netmall);
double 51 = 8 * =xp{R + * 3N
sum_payoifs += payef([31,X);
double 82 = 8 * exp(R + 5D * (=)}
sum.payoffs += payef(32.X);

réaturn exp(—t*Hme) * (sum_payoffs/(2*no_sims));

Listing 8: Generic with antithetic variates

Boyle (1977) shows that the
efficiency gain with antithetic
varates is not particularly large.
There
ensuring

are other
that the
values really span the whole

ways of

simulated

i

sample space, sometimeas called
“pseudo Monte Carlo”

Simulation Example
Let us see how these im-
actual

provements change

values. We use the same num-
bers as in listing 6, but add esti-
mation using contral and anti-
thetic variates. Listing @ shows
a complete example of how this

is done.

Majalah Ekonomi dan Komputer No.3 Tahun XIV-2006

—__________ _ ____

dincludo "Fin_rocipes.h"
finchude <algorithm >
finclodo <ijotreeam>
Using nAaMespAce 3td,

! doubls pasoff ctttopcan cell{conat doublef price, const doublef: X){ return mex({0.0ptie—X), }
| double payofi_curopean_put (const doublek: prce, const doubled: X) { return max{D.0,X—price), }.

int mainf){
| double 8 = 100.0;
3 double X = 1000
i double ¢ = 0.1

double sigma = 0 25,

double time = 1.0

int oo sima = S0000;

cott << "Black Scholex call option prica= *

<< option_price czll badi_scholeafS X r smma me)
<< endl,

et << "Simoleted cell optica prica="
<< derivetive prcesimulabe_citropcan_option. geaeric(S X + sigma e,

peyofl_suropcan._call so_ =)
<< endl

oot << "Bimulsted call optica price, V="
<< dedvative price simulate_curopean_option.genetic with contrmol_varizbe(S X rsigme, Hme,

payoff _cltobean_call, no .sima)
<< endl,

cottt << "Bimulebed cmll optiion prica, AV = °
<< derfvabve.prce simulate curopean opHon. generic with anbithebc varate(S X ¢ sgma time,
payofl_suropean call ho_sims)

<< endl;
oot << "Black Bcholas put optica prica ="

<< optioh_ptice put Hadt scholes(S X rdpna Hme)
<< endl,

et << "Simnlsted put optica prica = "

<< detivabive price simulate_european_option_genesic{S X r sizma Hime payofl_curopean_put oo sines)
<< endl;

cotk << "Bamnleted pet option pricas, ¥ ="
<< derivabive ptce simulate_siropean_option. getctic with_control_vatizbe(S, X rsigma Hine,

payafl _etropoan.put,no ama)
<< chdl,

catik << "Simuleted put option prica, AY = "
<< detivabive price simtilate_suropean opton_generic with_anbthete variate(S X raigma time,
payof_etropean . put, no.sims)
<< endl

Listing 9: Simulationg Black Scholes values using the generic Monte Carlo routine, with efficiency
improvements

Argamaya, Option Pricing. ...

e E——

Running this program results in
the output

Black Scholes call option price =
14.9758

Simulated call option price =
14985

Simulated call option price, CV =
14 9758

Simulated call option price, AV =
14.9819

Black Scholes put option price
5.45954

Simulated put option price
5.41861

Simulated put option price, CV =
5.42541
Simulated put option price, AV =
5.46043

More Exotic Options

These generic routines can also
be used to price other options.
Any European option that only
depends on the terminal value of
the price of the underlying
security can be valued. Consider
the binary options discussed by
e.g. Hull (2005). An cash or

nothing call pays a fixed amount
O if the price of the asset is
above the exercise price at
maturity, otherwise nothing. An
asse! or nothing call pays the
price of the asset if the price is
above
maturity, otherwise nothing. Both
of these options are easy to
implement using the generic
that is
to provide the
payoff functions as shown in
listing 10..

the exercise price at

routines above, all

necessary is

double payoff_cash ot nothing.call{const doublef: price, const doublef X){

double Q=1

if (price>=X) return Q

return 0

}

double payoff_zssct or_pothing.call(const doublef: psicc, const doubled: X){
if [price>=X) return price;

return O,

)i

Mow, many exotic options are
not simply functions of the
terminal price of the underiying
security, but depend on the
evolution of the price from
““now” till the terminal date of the
option. For example options that
depend on the average of the
price of the underlying (Asian

options). For such cases one will

154

Listing 10: Payoff binary options

have to simulate the whole path
We will return to these cases in
the chapler on pricing of exofic
options.

CONCLUSION

Variance reduction techniques
offer potentially large increases
in the precision of estimated
derivative values. The method of

Antithetic
generally

Variates (AV) s
less effective than
Control Variates (CV), but AV
can be easily applied to more
types of derivatives than CV
because CV requires that a
control
When applicable, the

combination of AV and CVY can

variate s available.

increase precision even further.

e

- ——

Interest in use of Monte Carlo
methods for derivatives pricing is
increasing because of the
flexibility of the method In
complax

Monte

handiing financial

instruments. Carlo
simulation will continue to gain
appeal as financial instruments
become more complex,
workstations become faster, and
simulation software is adopted
by more users. The use of
variance reduction techniques
along with the greater power of
today's workstations can help to
reduce the execution

required for

time
achieving
acceptable precision to the point
that simulation can be used by

financial ftraders to wvalue
derivatives in real time.
REFERENCES

Black, F. and Schales,

M.S.(1973). “The pricing of
oplions and corporate
liabilities.” Journal of Poli-
tical Economy, 7: 637-54
Boyle, P. (1977). "Options: A
Monte Carlo Approach”
Journal of Financial Eco-
nomics, May 1977,

pp.323-338

Majalah Ekonomi dan Komputer No.2 Tahun XIV-2006

A,

Glasserman, P. (2004); Monte
Carlo Methods in Finan-
cial Engineering, Spri-
nger-Veriag New York, Inc.

Hull, J. (2005). Options,
Futures and other Deri-

Sixth Edition,
Prentice-Hall

Jackel, P. (2002). Monte Carlo

methods in finance. John

vatives.

Wiley and Sons.

Law, A. M. and Kellon, W. D.
(2000). Simulation Model-
ing and Analysis, 3rd
edition Yorke
McGraw-Hill

Merton, R. C.(1973). “The theory
of rational option pricing”
Bell Journal, 4: 141-183

New

