PERAMALAN HARGA SAHAM PENUTUPAN INDEKS HARGA SAHAM GABUNGAN (IHSG) MENGGUNAKAN ALGORITMA LONG SHORT TERM MEMORY (LSTM)

Eka Patriya
Gunadarma University
Indonesia
Andriansyah Latif
Gunadarma University
Indonesia
Handayani Handayani
Gunadarma University
Indonesia

Abstract

Investasi merupakan suatu kegiatan yang dilakukan untuk uang kepada suatu produk investasi untuk mendapatkan keuntungan (benefit) dengan harapan secara imbal balik mendapat keuntungan yang lebih besar di masa depan. Saham sebagai bentuk kegiatan investasi yang dapat menjadi alternatif sumber dana bagi para investor baik perusahaan atau pun individual. Seorang investor saham dituntut untuk bisa melakukan analisis dari indikator yang dapat mempengaruhi pergerakan saham. Indeks Harga Saham Gabungan (IHSG) merupakan salah satu indikator yang perlu diperhatikan dalam berinvestasi. IHSG merupakan refleksi dari kinerja keseluruhan saham perusahaan dan aktifitas kinerja ini dicatat di Bursa Efek Indonesia (BEI). BEI akan mencatat saham yang mengalami kenaikan dan penurunan.  Penelitian ini melakukan peramalan saham berdasarkan harga penutupan saham IHSG menggunakan Long Short Term Memory (LSTM). Evaluasi kinerja model LSTM dalam melakukan peramalan menggunakan Root Mean Square Error (RMSE). Model LSTM yang dibentuk dapat digunakan untuk melakukan peramalan harga penutupan saham, sehingga dapat menjadi pertimbangan para investor untuk melakukan investasi saham. Invesitasi saham dapat dilakukan salah satunya dengan melihat nilai pergerakan IHSG yang mencerminkan nilai kinerja saham di pasar keuangan.

Keywords
LSTM; Penutupan; Pergerakan; RMSE; Saham
References

Aldhyani, T. H. H., & Alzahrani, A. (2022). Framework for predicting and modeling stock market prices based on deep learning algorithms. Electronics (Switzerland), 11(19), 1–19. doi.org/10.3390/electronics11193149

Bhandari, H. N., Rimal, B., Pokhrel, N. R., Rimal, R., Dahal, K. R., & Khatri, R. K. C. (2022). Predicting stock market index using LSTM. Machine Learning with Applications, 9(May), 100320, 1–18. doi.org/10.1016/j.mlwa.2022.100320

Budiharto, W. (2021). Data science approach to stock prices forecasting in Indonesia during Covid-19 using Long Short-Term Memory (LSTM). Journal of Big Data, 8(1), 1–12. doi.org/10.1186/s40537-021-00430-0

Chai, T., & Draxler, R. R. (2014). Root mean square error (RMSE) or mean absolute error (MAE)? -Arguments against avoiding RMSE in the literature. Geoscientific Model Development, 7(3), 1247–1250. doi.org/10.5194/gmd-7-1247-2014

Darmawan, K. P. J., & Yasa, I. N. M. (2022). Pengaruh kinerja makroekonomi terhadap Indeks Harga Saham Gabungan (IHSG) dan government bonds di Indonesia. E-Jurnal Ekonomi Dan Bisnis Universitas Udayana, 11(03), 257-270. doi.org/10.24843/eeb.2022.v11.i03.p02

Gaies, B., Nakhli, M. S., Ayadi, R., & Sahut, J. M. (2022). Exploring the causal links between investor sentiment and financial instability: A dynamic macro-financial analysis. Journal of Economic Behavior and Organization, 204(November), 290–303. doi.org/10.1016/j.jebo.2022.10.013

Hodson, T. O. (2022). Root-mean-square error (RMSE) or mean absolute error (MAE): when to use them or not. Geoscientific Model Development, 15(14), 5481–5487. doi.org/10.5194/gmd-15-5481-2022

Hou, Y. (2022). Global mean square error separation loss. Journal of Physics: Conference Series, 2363(1), 1–9. doi.org/10.1088/1742-6596/2363/1/012007

Koputra, T., & Mahadwartha, P. A. (2021). Herding behavior detection: Bullish and bearish cases. Proceedings of the 18th International Symposium on Management (INSYMA 2021), 180(Insyma), 11–15. doi.org/10.2991/aebmr.k.210628.003

Kulo, C., Sari, Z. P., Bantahari, T.A., & Maramis, J., (2022). Faktor – faktor yang mempengaruhi Indeks Harga Saham Gabungan di Bursa Efek Indonesia periode 2018-2021. Jurnal EMBA, 10(4), 1577–1588.

Lanbouri, Z., & Achchab, S. (2020). Stock market prediction on high frequency data using long-short term memory. Procedia Computer Science, 175(2020), 603–608. doi.org/10.1016/j.procs.2020.07.087

Luckieta, M., Amran, A., & Alamsyah, D. P. (2020). The fundamental analysis of stock prices. TEST : Engineeering & Management, 83(September), 28720–28729. Retrieved from: https://www.researchgate.net/publication/344237173.

Moghar, A., & Hamiche, M. (2020). Stock market prediction using LSTM recurrent Neural network. Procedia Computer Science, 170(2020), 1168–1173. doi.org/10.1016/j.procs.2020.03.049

Palupi, A. (2022). Covid-19 pandemic and its effect on capital market development: A literature review. Fair Value: Jurnal Ilmiah Akuntansi Dan Keuangan, 4(9), 4052–4057. doi.org/10.32670/fairvalue.v4i9.1588

Qiu, J., Wang, B., & Zhou, C. (2020). Forecasting stock prices with long-short term memory neural network based on attention mechanism. PLoS ONE, 15(1), 1–15. doi.org/10.1371/journal.pone.0227222

Sahabuddin, Z. A., & Hadianto, B. (2022). The weekend effect investigation: Evidence from Indonesia Capital Market. Universal Journal of Accounting and Finance, 10(2), 574–583. doi.org/10.13189/ujaf.2022.100222

Shankar, P., Sharma, N., Raj, R. & Dawaldi, C. (2022). Stock-price-prediction-using. Retrieved from: https://www.researchgate.net/publication/358662548_Stock-Price-Prediction-Using

Stahl, M. J. (2012). Service operations. Encyclopedia of Health Care Management, October 2019, 8–9. doi.org/10.4135/9781412950602.n723

Wang, L. (2020). An improved Long Short-Term memory neural network for macroeconomic forecast. Revue d’Intelligence Artificielle, 34(5), 577–584. doi.org/10.18280/RIA.340507

Wanniarachchige, M. K., & De Silva, L. D. (2021). Impact of board democracy on financial performance of firms listed in colombo stock exchange. International Journal of Accounting and Business Finance, 7(2), 1-21. doi.org/10.4038/ijabf.v7i2.92

Wen, Y., Lin, P., & Nie, X. (2020). Research of stock price prediction based on PCA-LSTM model. IOP Conference Series: Materials Science and Engineering, 790(1), 4–10. doi.org/10.1088/1757-899X/790/1/012109

Wibowo, F. D., Dang, T.T., & Wang, C.N. (2022). Forecasting Indonesia stock price using time series analysis and machine learning in R. Indonesian Scholars Scientific Summit Taiwan Proceeding, 4(August), 103–108. doi.org/10.52162/4.2022166

Wildani, M. A. (2022). The effect of commodity supercycle and domestic market obligation on profitability ratio (Net Profit Margin , Return On Asset ) case study on coal mining issuers in Indonesia Stock Exchange. International Journal of Financial and Investment Studies (IJFIS). 3(2), 63–68. doi.org/10.9744/ijfis.3.2.63-68

Information
Cover Image
PDF
785 times PDF : 576 times